Network Working Group

Y. Goland

Request for Comments: 2518

Microsoft

Category: Standards Track

E. Whitehead

UC Irvine

A. Faizi

Netscape

S. Carter

Novell

D. Jensen

Novell

February 1999
RFC 2518
WEBDAV
February 1999

1 Open Issues

1.1 If Header

If headers, particularly tagged if lists. Has interoperability been proved for anything besides the mere purpose of providing the lock token? Should untagged if lists be checked against every affected resource?

1.2 Source property

The Source property has not had interoperability demonstrated, but messages to the list support keeping some way of retrieving the source of dynamically-generated Web pages. An interoperable solution exists (the Microsoft Translate header) but has received rejection on the list due to its lack of support for dynamically-generated resources with multiple source files.

1.3 What to do for missing/empty properties

What should a server do if it doesn’t have a value for a required property, such as “creationdate”. Waiting for mailing list discussion to arrive at clear answer.

1.4 Other Unresolved

Refer to http://www.webdav.org/wg/rfcdev/issues.htm for the codes.

BACKGROUND - What documents are considered necessary background?

CONSISTENCY - need to decide if we want to make this proposed change.

COMPLIANCE_RESOURCE - Some proposed language would be nice.

WRITE_DAV_PROP - Need discussion on which properties are writable or protected.

DEFINE_PRINCIPAL - May wait until ACL is a RFC to define this.

OVERLAP_5.3_AND_8.7.2 - I don't see the overlap. Can somebody suggest new language if they do get it?

302_AND_MULTISTATUS - It's unclear what purpose this would serve for base 2518. It's also an addition to 2518 which is difficult to achieve now. It can be specified in advanced collections. I recommend marking this closed "will not make changes".

MKCOL_AND_302 - Not discussed widely.

 IMPLIED_LWS - I don't know what this means.

PUT_AND_INTERMEDIATE_COLLECTIONS - No proposed solutions yet. It would be good to know if it's a problem in practice or just in theory.

INTEROP_DELETE_AND_MULTISTATUS - No proposed solutions yet. It would be good to know if it's a problem in practice.

OVERWRITE_DELETE_ALL_TOO_STRONG - No proposed solutions yet.

2 Small Changes

Each change to RFC2518 is described in its own section in this document. At the top of each section is summary information about the change. Here is the key to that information:

	Section of 2518 which changed
	What draft of RFC2518 fixed it
	Issue code

The issue codes are at http://www.webdav.org/wg/rfcdev/issues.htm.

2.1 Clarification on use of DAV: namespace

	Section 1.
	Fixed in 01
	?

Original:

The XML namespace extension is also used in this specification in order to allow for new XML elements to be added without fear of colliding with other element names.

New:

The XML namespace extension is also used in this specification in order to allow for new XML elements to be added without fear of colliding with other element names. Although WebDAV request and response bodies can be extended by arbitrary XML elements, which can be ignored by the message recipient, an XML element in the DAV namespace SHOULD NOT be used in the request or response body of a versioning method unless that XML element is explicitly defined in an IETF RFC.

2.2 Where to put xml:lang attribute

	Section 4.4
	Fixed in 00
	XML_LANG_CLARIFY

Original:

XML's support for multiple human languages, using the “xml:lang” attribute, handles cases where the same character set is employed by multiple human languages.

New:

XML's support for multiple human languages, using the “xml:lang” attribute (in the case of WebDAV properties, this attribute is placed on the ‘prop’ element), handles cases where the same character set is employed by multiple human languages.

2.3 Move UUID generation text to appendix

	Section 6.4, 6.4.1
	Fixed in 01
	MOVE_SECTION_6.4.1_TO_APPX

Added to section 6.4:

"Appendix 4 contains some suggestions on how to generate UUIDs."

Section 6.4.1 was moved to create Appendix 4.

2.4 Retrieving Named Properties example namespace scope

	Section 8.1.1
	Fixed in 01
	MISSING_NS_SPEC

Purpose: Move the namespace declaration in the server's response to a location where it includes in its scope all uses of the namespace.

Original:

<D:response>

<D:href>http://www.foo.bar/file</D:href>

<D:propstat>

<D:prop xmlns:R="http://www.foo.bar/boxschema/">

<R:bigbox>

New:

<D:response xmlns:R="http://www.foo.bar/boxschema/">

<D:href>http://www.foo.bar/file</D:href>

<D:propstat>

<D:prop>

<R:bigbox>

2.5 Allprop example contains spaces in element value

	Section 8.1.2
	Fixed in 00
	?

Original:

 <D:getetag>

 zzyzx

 </D:getetag>

New:

 <D:getetag>“zzyzx“</D:getetag>

2.6 PROPPATCH example discussion confuses namespaces with prop names

	Section 8.2.2
	Fixed in 00
	?

Original:

In this example, the client requests the server to set the value of the http://www.w3.com/standards/z39.50/Authors property, and to remove the property http://www.w3.com/standards/z39.50/Copyright-Owner.

New:

In this example, the client requests the server to set the value of the “Authors” property in the “http://www.w3.com/standards/z39.50/” namespace, and to remove the property “Copyright-Owner” in the “http://www.w3.com/standards/z39.50/” namespace.

2.7 Clarify who may unlock

	Section 8.10.1
	Fixed in 00
	?

Original:

For example, an administrator may remove a lock at any time or the system may crash in such a way that it loses the record of the lock's existence.

New:

For example, a sufficiently privileged user may remove a lock at any time or the system may crash in such a way that it loses the record of the lock's existence.

2.8 Clarification of who controls lock owner field

	Section 8.10.1
	Fixed in 00
	HOW_DOES_A_CLIENT_DETERMINE_IF_IT_OWNS_A_LOCK

Original

A LOCK method invocation creates the lock specified by the lockinfo XML element on the Request-URI. Lock method requests SHOULD have a XML request body which contains an owner XML element for this lock request, unless this is a refresh request. The LOCK request may have a Timeout header.

New:

A LOCK method invocation creates the lock specified by the lockinfo XML element on the Request-URI. Lock method requests SHOULD have a XML request body which contains an owner XML element for this lock request, unless this is a refresh request. The server MUST preserve the information provided by the client in the owner field when the lock information is requested. The LOCK request may have a Timeout header.

2.9 Examples of XML element value infinity made correct case

	Sections 8.10.8 and 8.10.9
	Fixed in 00
	INFINITY_USE_IN_XML

The XML DTD says the value for the “depth” element may be “infinity”, not “Infinity”. Thus the examples were changed to agree with the DTD. Changes in 8.10.8 and 8.10.9.

2.10 Example of LOCK response need to include header

	Sections 8.10.8
	Fixed in 01
	MISSING_LOCK_TOKEN

Section 8.10.1 requires that successful responses for NEW locks must include the Lock-Token header in the response. The example did not show that.

Section 8.10.8, original:

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

New:

HTTP/1.1 200 OK

Lock-Token: <opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4>

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

2.11 Only LOCK should refresh a lock timeout

	Section 9.8
	Fixed in 00
	LOCK_REFRESH_BY_METHODS

Original:

The timeout counter SHOULD be restarted any time an owner of the lock sends a method to any member of the lock, including unsupported methods, or methods which are unsuccessful. However the lock MUST be refreshed if a refresh LOCK method is successfully received.

New:

The timeout counter SHOULD NOT be restarted any time an owner of the lock sends a method to any member of the lock, including unsupported methods, or methods which are unsuccessful. However the lock MUST be refreshed if a refresh LOCK method is successfully received.

3 Stuff Added

3.1 Versioning not supported in WebDAV

	Section 1, references section
	Fixed in 01
	NOTE_NO_VERSIONING

Added to section 1:

This standard does not specify the versioning operations suggested by [RFC2291]. That work was done in a separate document, "Versioning Extensions to WebDAV" [RFC3253].

Added to references:

[RFC3253] G. Clemm, J. Amsden, T. Ellison, C. Kaler, J. Whitehead, "Versioning Extensions to WebDAV (Web Distributed Authoring and Versioning)." RFC 3253. Rational Software, IBM, Microsoft, UCSC. March 2002.

3.2 XML may not be valid

	Section 1
	Fixed in 01
	XML_NOT_VALID

Added to section 1:

"A DTD is provided in Appendix 1. However, legal XML may not be valid according to this DTD, because unknown XML elements may appear in WebDAV syntax without making the syntax illegal."

3.3 Attributes in property values are significant.

	Section 4.4.
	Fixed in 01
	PROP_ATTR

Added to section 4.4:

"Other XML attributes in property values are significant. The server MUST persistently store the XML attribute information stored on XML elements contained by the XML element whose name is the name of the property. Attributes on the property name element SHOULD be persistently stored and restored in PROPFIND responses (other than the "xml:lang" and namespace attributes which MUST be stored). "

3.4 Spacing significant in XML property values

	Section 4.4, 8.10.8, 8.10.9, 13.8.1
	Fixed in 01
	?

Added:

White space in property values is significant. The XML attribute xml:space MUST not be used to change white space handling.

Section 8.10.8, 8.10.9, Original:

<D:href>

opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4

</D:href>

New:

<D:href>opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4</D:href>

Section 13.8.1, original:

<D:href>

 opaquelocktoken:f81de2ad-7f3d-a1b2-4f3c-00a0c91a9d76

</D:href>

New:

<D:href>opaquelocktoken:f81de2ad-7f3d-a1b2-4f3c-00a0c91a9d76</D:href>

Added, section 8.10.8:

Note that the locktoken href element would not contain any whitespace. The line return appearing in this document is only for formatting.

3.5 Root of repository may not be root of namespace

	Section 5.2
	Fixed in 00
	?

Interoperability problems prompted the addition of this clarifying text:

Clients MUST be able to support the case where WebDAV resources are contained inside non-WebDAV resources. For example, if a OPTIONS response from “http://foo.bar/servlet/dav/collection” indicates WebDAV support, the client cannot assume that “http://foo.bar/servlet/dav/” or its parent necessarily are WebDAV collections.

3.6 What URL to use in multistatus move/copy

	Section 5.2
	Fixed in 01
	COPYMOVE_LOCKED_STATUS_CODE_CLARIFICATION

Originally COPY and MOVE did not explain how to use multi-status, specifically what hrefs to report. Text was added to section 8.8.5:

207 (Multi-Status) - Multiple resources were to be affected by the COPY, but errors on some of them prevented the operation from taking place. Specific error messages, together with the most appropriate of the source and destination URLs, appear in the body of the multi-status response. E.g. if a destination resource was locked and could not be overwritten, then the destination resource URL appears with the 423 (Locked) status.

Text was added to section 8.9.4:

207 (Multi-Status) - Multiple resources were to be affected by the MOVE, but errors on some of them prevented the operation from taking place. Specific error messages, together with the most appropriate of the source and destination URLs, appear in the body of the multi-status response. E.g. if a source resource was locked and could not be moved, then the source resource URL appears with the 423 (Locked) status.

3.7 Clarification of LOCK method error response

	Section 8.10.7
	Fixed in 00
	?

Originally, the LOCK method said nothing about what error message to return if the parent of the named resource does not exist. The appropriate error message to use is clearly 409, because many other methods use it the same way.

New Wording:

409 (Conflict) – A resource cannot be created at the destination until one or more intermediate collections have been created.

3.8 Properties are live/protected

	Section 13
	Fixed in 01
	LIVE_AND_NON_LIVE

Added to the end of the description for each property:

Creationdate: " This property is live and protected."

Displayname: " This property is live and MAY be protected."

getcontentlanguage: " This property is live and MAY be protected."

getcontentlength: " This property is live and protected."

Getcontenttype: " This property is live and MAY be protected."

getetag: " This property is live and protected."

getlastmodified: " This property is live and protected."

lockdiscovery: " This property is live and protected."

resourcetype: " This property is live and protected."

source: " This property is live and MAY be protected."

Supportedlock: " This property is live and protected."

3.9 Add comments to DTD to aid readability

	Section 23.1
	Fixed in 01
	EMPHASIZE_DTD_GROUPS

Only the comments were added to this DTD. Some of the definitions (href and prop) were reordered to aid readability.

<!DOCTYPE webdav-1.0 [

<!--============ XML Elements from Section 12 ==================-->

<!-- General-use Elements -->

<!ELEMENT href (#PCDATA) >

<!ELEMENT prop ANY >

<!-- Property Elements for 'lockdiscovery' and 'supportedlock' -->

<!ELEMENT activelock (lockscope, locktype, depth, owner?, timeout?, locktoken?) >

<!ELEMENT lockentry (lockscope, locktype) >

<!ELEMENT lockinfo (lockscope, locktype, owner?) >

<!ELEMENT locktype (write) >

<!ELEMENT write EMPTY >

<!ELEMENT lockscope (exclusive | shared) >

<!ELEMENT exclusive EMPTY >

<!ELEMENT shared EMPTY >

<!ELEMENT depth (#PCDATA) >

<!ELEMENT owner ANY >

<!ELEMENT timeout (#PCDATA) >

<!ELEMENT locktoken (href+) >

<!-- Property Elements for 'source' -->

<!ELEMENT link (src+, dst+) >

<!ELEMENT dst (#PCDATA) >

<!ELEMENT src (#PCDATA) >

<!-- Multi-Status Response Body Elements -->

<!ELEMENT multistatus (response+, responsedescription?) >

<!ELEMENT response (href, ((href*, status)|(propstat+)), responsedescription?) >

<!ELEMENT status (#PCDATA) >

<!ELEMENT propstat (prop, status, responsedescription?) >

<!ELEMENT responsedescription (#PCDATA) >

<!-- PROPPATCH Request Body Elements -->

<!ELEMENT propertyupdate (remove | set)+ >

<!ELEMENT remove (prop) >

<!ELEMENT set (prop) >

<!-- PROPFIND Request Body Elements -->

<!ELEMENT propfind (allprop | propname | prop) >

<!ELEMENT allprop EMPTY >

<!ELEMENT propname EMPTY >

<!-- Property Elements for 'resourcetype' -->

<!ELEMENT collection EMPTY >

... rest unchanged ...

4 Stuff Removed

4.1 Justification for MKCOL vs. PUT removed

	Section 5.3
	Fixed in 01
	REMOVE_SECTION_5.3

The following text was removed, which comprises all of what was Section 5.3. What was section 5.4 will now be 5.3 in RFC2518 bis.

Removed text:

(Creation and Retrieval of Collection Resources)

This document specifies the MKCOL method to create new collection resources, rather than using the existing HTTP/1.1 PUT or POST method, for the following reasons:

In HTTP/1.1, the PUT method is defined to store the request body at the location specified by the Request-URI. While a description format for a collection can readily be constructed for use with PUT, the implications of sending such a description to the server are undesirable. For example, if a description of a collection that omitted some existing resources were PUT to a server, this might be interpreted as a command to remove those members. This would extend PUT to perform DELETE functionality, which is undesirable since it changes the semantics of PUT, and makes it difficult to control DELETE functionality with an access control scheme based on methods.

While the POST method is sufficiently open-ended that a "create a collection" POST command could be constructed, this is undesirable because it would be difficult to separate access control for collection creation from other uses of POST.

The exact definition of the behavior of GET and PUT on collections is defined later in this document.

4.2 Lock-null resources removed

	Section 7.4
	Fixed in 00
	DEFER_LOCK_NULL_RESOURCES_IN_SPEC

Original:

It is possible to assert a write lock on a null resource in order to lock the name.

A write locked null resource, referred to as a lock-null resource, MUST respond with a 404 (Not Found) or 405 (Method Not Allowed) to any HTTP/1.1 or DAV methods except for PUT, MKCOL, OPTIONS, PROPFIND, LOCK, and UNLOCK. A lock-null resource MUST appear as a member of its parent collection. Additionally the lock-null resource MUST have defined on it all mandatory DAV properties. Most of these properties, such as all the get* properties, will have no value as a lock-null resource does not support the GET method. Lock-Null resources MUST have defined values for lockdiscovery and supportedlock properties.

Until a method such as PUT or MKCOL is successfully executed on the lock-null resource the resource MUST stay in the lock-null state. However, once a PUT or MKCOL is successfully executed on a lock-null resource the resource ceases to be in the lock-null state.

If the resource is unlocked, for any reason, without a PUT, MKCOL, or similar method having been successfully executed upon it then the resource MUST return to the null state.

New:

It is possible to lock an unmapped URL in order to lock the name for use. This is a simple way to avoid the lost-update problem on the creation of a new resource (another way is to use If-None-Match header specified in HTTP 1.1). It has the side benefit of locking the new resource immediately for use of the creator.

The lost-update problem is not an issue for collections because MKCOL can only be used to create a collection, not to overwrite an existing collection. In order to immediately lock a collection upon creation, clients may attempt to pipeline the MKCOL and LOCK requests together.

A lock request to an unmapped URL should result in the creation of a resource that is locked. A subsequent PUT request with the correct lock token should normally succeed, and provides the content, content-type, content-language and other information as appropriate.

In this situation, WebDAV servers compliant with RFC2518 MAY create “lock-null” resources which are special and unusual resources. A lock-null resource:

· responds with a 404 or 405 to any DAV method except for PUT, MKCOL, OPTIONS, PROPFIND, LOCK, UNLOCK.

· Appears as a member of its parent collection.

· Disappears (becomes once more an unmapped URL) if its lock goes away before it is converted to a regular resource. (This must also happen if it is renamed or moved, or if any parent collection is renamed or moved, because locks are tied to URLs).

· May be turned into a regular resource when a PUT request to the URL is successful. Ceases to be a lock-null resource.

· May be turned into a collection when a MKCOL request to the URL is successful. Ceases to be a lock-null resource

· Has defined values for lockdiscovery and supportedlock properties.

However, interoperability and compliance problems have been found with lock-null resources. Therefore, they are deprecated. WebDAV servers compliant with this document SHOULD create regular locked empty resources, which behave in every way as if they were a normal resource. A locked empty resource:

· Can be downloaded, deleted, moved, copied, and in all ways behave as a regular resource, not a lock-null resource.

· Appears as a member of its parent collection.

· SHOULD NOT disappear when its lock goes away (clients must therefore be responsible for cleaning up their own mess, as with any other operation)

· SHOULD default to a content-type of “application/octet-stream”.

· SHOULD default to reasonable, or reasonably blank, values for other properties like getcontentlanguage.

· May have content added with a PUT request. MUST be able to change content type.

· MUST NOT be turned into a collection. A MKCOL request must fail as it would to any existing resource.

· MUST have defined values for lockdiscovery and supportedlock properties.

· The response MUST indicate that a resource was created, by use of the “201 Created” response code (a LOCK request to an existing resource instead will result in 200 OK). The body must still include the lockdiscovery property, as with a LOCK request to an existing resource.

Clients can easily interoperate with either kind of server (both exist) by only attempting PUT after a LOCK to an unmapped URL, not MKCOL or GET.

4.3 ‘allprop’ deprecated

	Sections 8.1, 8.1.2, 21.2
	Fixed in 00, changed in 01
	ALLPROP_AND_COMPUTED

To deprecate allprop, the following paragraph was added to section 8.1, and section 8.1.2 (allprop example) was removed.

Clients MUST not send allprop requests in any form (either the empty body PROPFIND or the specific allprop element), because allprop is being removed. WebDAV servers increasingly have expensively-calculated or lengthy properties (see [RFC3253] and [TODO: ref ACL RFC when available]) and do not return all properties already. Instead, WebDAV clients can use propname requests to discover what properties exist, and request named properties when retrieving values. A WebDAV server MAY omit certain live properties from other specifications when responding to an allprop request from an older client, and MAY return only custom (dead) properties and those defined in this specification.

Added to references section:

[RFC3253] G. Clemm, J. Amsden, T. Ellison, C. Kaler, J. Whitehead, "Versioning Extensions to WebDAV (Web Distributed Authoring and Versioning." RFC 3253. Rational Software, IBM, Microsoft, UCSC. March 2002.

4.4 Redundant paragraph in PUT for Collections removed

	Section 8.7.2
	Fixed in 01
	PUT_FOR_NON_COLLECTION_RES

Removed paragraph:

When the PUT operation creates a new non-collection resource all ancestors MUST already exist. If all ancestors do not exist, the method MUST fail with a 409 (Conflict) status code. For example, if resource /a/b/c/d.html is to be created and /a/b/c/ does not exist, then the request must fail.

4.5 Propertybehavior (in MOVE, COPY) removed

	Section 12.12 to 12.14
	Fixed in 00
	DTD_BOOBOO

Sections 12.12, 12.13 and 12.14 were removed: these are the XML element definitions for propertybehavior, keepalive and omit. These XML element definitions were also removed from the DTD. Other changes made:

Original COPY for properties, 8.8.2:

The following section defines how properties on a resource are handled during a COPY operation.

Live properties SHOULD be duplicated as identically behaving live properties at the destination resource. If a property cannot be copied live, then its value MUST be duplicated, octet-for-octet, in an identically named, dead property on the destination resource subject to the effects of the propertybehavior XML element.

The propertybehavior XML element can specify that properties are copied on best effort, that all live properties must be successfully copied or the method must fail, or that a specified list of live properties must be successfully copied or the method must fail. The propertybehavior XML element is defined in section 12.12.

New:

Live properties described in this document SHOULD be duplicated as identically behaving live properties at the destination resource. If a property cannot be copied live, then its value MUST be duplicated, octet-for-octet, in an identically named, dead property on the destination resource.

Original COPY and MOVE status code (2 times, section 8.8.5 and 8.9.4):

412 (Precondition Failed) - The server was unable to maintain the liveness of the properties listed in the propertybehavior XML element or the Overwrite header is “F” and the state of the destination resource is non-null.

New:

412 (Precondition Failed) – A precondition failed, e.g. the Overwrite header is “F” and the state of the destination resource is non-null.

Original COPY collection example:

>>Request

COPY /container/ HTTP/1.1

Host: www.foo.bar

Destination: http://www.foo.bar/othercontainer/

Depth: infinity

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>

<d:propertybehavior xmlns:d="DAV:">

<d:keepalive>*</d:keepalive>

</d:propertybehavior>

>>Response

HTTP/1.1 207 Multi-Status

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>

<d:multistatus xmlns:d="DAV:">

<d:response>

<d:href>http://www.foo.bar/othercontainer/R2/</d:href>

<d:status>HTTP/1.1 412 Precondition Failed</d:status>

</d:response>

</d:multistatus>

The Depth header is unnecessary as the default behavior of COPY on a collection is to act as if a “Depth: infinity” header had been submitted. In this example most of the resources, along with the collection, were copied successfully. However the collection R2 failed, most likely due to a problem with maintaining the liveness of properties (this is specified by the propertybehavior XML element). Because there was an error copying R2, none of R2's members were copied. However no errors were listed for those members due to the error minimization rules given in section 8.8.3.

New

>>Request

COPY /container/ HTTP/1.1

Host: www.foo.bar

Destination: http://www.foo.bar/othercontainer/

Depth: infinity

>>Response

HTTP/1.1 207 Multi-Status

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>

<d:multistatus xmlns:d="DAV:">

<d:response>

<d:href>http://www.foo.bar/othercontainer/R2/</d:href>

<d:status>HTTP/1.1 423 Locked</d:status>

</d:response>

</d:multistatus>

The Depth header is unnecessary as the default behavior of COPY on a collection is to act as if a “Depth: infinity” header had been submitted. In this example most of the resources, along with the collection, were copied successfully. However the collection R2 failed because the destination R2 is locked. Because there was an error copying R2, none of R2's members were copied. However no errors were listed for those members due to the error minimization rules given in section 8.8.3.

Original MOVE for properties, section 8.9.1

The behavior of properties on a MOVE, including the effects of the propertybehavior XML element, MUST be the same as specified in section 8.8.2.

New:

The behavior of properties on a MOVE MUST be the same as specified in section 8.8.2.

Original MOVE collection example, section 8.9.6

>>Request

MOVE /container/ HTTP/1.1

Host: www.foo.bar

Destination: http://www.foo.bar/othercontainer/

Overwrite: F

If: (<opaquelocktoken:fe184f2e-6eec-41d0-c765-01adc56e6bb4>)

 (<opaquelocktoken:e454f3f3-acdc-452a-56c7-00a5c91e4b77>)

Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>

<d:propertybehavior xmlns:d='DAV:'>

<d:keepalive>*</d:keepalive>

</d:propertybehavior>

New:

>>Request

MOVE /container/ HTTP/1.1

Host: www.foo.bar

Destination: http://www.foo.bar/othercontainer/

Overwrite: F

If: (<opaquelocktoken:fe184f2e-6eec-41d0-c765-01adc56e6bb4>)

 (<opaquelocktoken:e454f3f3-acdc-452a-56c7-00a5c91e4b77>)

4.6 Appendix 4 on XML namespaces removed

	Appendix 4
	Fixed in 00
	NS_BOOBOO, XML_NS

This appendix was removed because it implies that you can take a namespace and append a property name from that namespace, and treat that as a qualified name. However, that is false, as can be seen in the following example:

Namespace = http://www.foo.bar/standards/props/
Name=apropertyname

Namespace = http://www.foo.bar/standards/props/a
Name=propertname

Although appending the property name on the namespace will produce an identical string for the two cases, they are not the same property, nor are they in the same namespace.

Since XML namespaces is now a standard and more widely understood, there seems to be no need whatsoever for this appendix.

A reference to this appendix appearing in section 1 was removed.

5 Issues Previously Resolved

The page "http://www.webdav.org/wg/rfcdev/issues.htm" lists some issues which had previously been resolved, likely while going to RFC status. These issues are:

· REMOVE_RELATED. This has been fixed.

· COLLECTION_INTRO. The language in the spec changed since the review referred to in this issue. I do not see any consensus for further changes in responses to that review.

6 Issues resolved by irrelevance

Some issues are irrelevant after other issues have been dealt with.

· NULL_RESOURCE issue is irrelevant when null resources have been done away with.

· COPY_OVERWRITE_LOCK_NULL same.

7 Issues resolved by rejection

Some issues have been resolved because they have been rejected by the WG.

· OPTION_WITH_DEPTH was rejected.

· NEED_FOR_PUTL was rejected

Goland, et al.
Standards Track
[Page 1]

Goland, et al.
Standards Track
[Page 12]

