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1.  Introduction

This document describes an extension to the HTTP/1.1 protocol that allows clients to perform remote web
content authoring operations. This extension provides a coherent set of methods, headers, request entity body
formats, and response entity body formats that provide operations for:

Properties: The ability to create, remove, and query information about Web pages, such as their authors,
creation dates, etc. Also, the ability to link pages of any media type to related pages.

Collections: The ability to create sets of documents and to retrieve a hierarchical membership listing (like a
directory listing in a file system).

Locking: The ability to keep more than one person from working on a document at the same time. This
prevents the "lost update problem," in which modifications are lost as first one author then another writes
changes without merging the other author's changes.

Namespace Operations: The ability to instruct the server to copy and move Web resources.

Requirements and rationale for these operations are described in a companion document, "Requirements for a
Distributed Authoring and Versioning Protocol for the World Wide Web" [RFC2291].

The sections below provide a detailed introduction to resource properties (Section 4), collections of resources
(Section 5), and locking operations (Section 6). These sections introduce the abstractions manipulated by the
WebDAV-specific HTTP methods described in Section 8, "HTTP Methods for Distributed Authoring".

In HTTP/1.1, method parameter information was exclusively encoded in HTTP headers. Unlike HTTP/1.1,
WebDAV encodes method parameter information either in an Extensible Markup Language (XML) [REC-
XML] request entity body, or in an HTTP header. The use of XML to encode method parameters was
motivated by the ability to add extra XML elements to existing structures, providing extensibility; and by
XML's ability to encode information in ISO 10646 character sets, providing internationalization support. As
a rule of thumb, parameters are encoded in XML entity bodies when they have unbounded length, or when
they may be shown to a human user and hence require encoding in an ISO 10646 character set. Otherwise,
parameters are encoded within HTTP headers. Section 9 describes the new HTTP headers used with WebDAV
methods.

In addition to encoding method parameters, XML is used in WebDAV to encode the responses from methods,
providing the extensibility and internationalization advantages of XML for method output, as well as input.

XML elements used in this specification are defined in Section 12.

The XML namespace extension (Appendix 23.4) is also used in this specification in order to allow for new
XML elements to be added without fear of colliding with other element names.

While the status codes provided by HTTP/1.1 are sufficient to describe most error conditions encountered by
WebDAV methods, there are some errors that do not fall neatly into the existing categories. New status codes
developed for the WebDAV methods are defined in Section 10. Since some WebDAV methods may operate
over many resources, the Multi-Status response has been introduced to return status information for multiple
resources. The Multi-Status response is described in Section 11.

WebDAV employs the property mechanism to store information about the current state of the resource. For
example, when a lock is taken out on a resource, a lock information property describes the current state of the
lock. Section 13 defines the properties used within the WebDAV specification.

Finishing off the specification are sections on what it means to be compliant with this specification
(Section 15), on internationalization support (Section 16), and on security (Section 17).
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2.  Notational Conventions

Since this document describes a set of extensions to the HTTP/1.1 protocol, the augmented BNF used herein to
describe protocol elements is exactly the same as described in section 2.1 of [RFC2068]. Since this augmented
BNF uses the basic production rules provided in section 2.2 of [RFC2068], these rules apply to this document
as well.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].
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3.  Terminology

  URI/URL - A Uniform Resource Identifier and Uniform Resource Locator, respectively. These terms (and the
distinction between them) are defined in [RFC2396].

 Collection - A resource that contains a set of URIs, termed member URIs, which identify member resources
and meets the requirements in Section 5 of this specification.

 Member URI - A URI which is a member of the set of URIs contained by a collection.

 Internal Member URI - A Member URI that is immediately relative to the URI of the collection (the definition
of immediately relative is given in Section 5.2).

 Property - A name/value pair that contains descriptive information about a resource.

 Live Property - A property whose semantics and syntax are enforced by the server. For example, the live
"getcontentlength" property has its value, the length of the entity returned by a GET request, automatically
calculated by the server.

 Dead Property - A property whose semantics and syntax are not enforced by the server. The server only
records the value of a dead property; the client is responsible for maintaining the consistency of the syntax and
semantics of a dead property.

 Null Resource - A resource which responds with a 404 (Not Found) to any HTTP/1.1 or DAV method except
for PUT, MKCOL, OPTIONS and LOCK. A NULL resource MUST NOT appear as a member of its parent
collection.
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4.  Data Model for Resource Properties

4.1  The Resource Property Model

Properties are pieces of data that describe the state of a resource. Properties are data about data.

Properties are used in distributed authoring environments to provide for efficient discovery and management of
resources. For example, a 'subject' property might allow for the indexing of all resources by their subject, and
an 'author' property might allow for the discovery of what authors have written which documents.

The DAV property model consists of name/value pairs. The name of a property identifies the property's syntax
and semantics, and provides an address by which to refer to its syntax and semantics.

There are two categories of properties: "live" and "dead". A live property has its syntax and semantics enforced
by the server. Live properties include cases where a) the value of a property is read-only, maintained by the
server, and b) the value of the property is maintained by the client, but the server performs syntax checking on
submitted values. All instances of a given live property MUST comply with the definition associated with that
property name. A dead property has its syntax and semantics enforced by the client; the server merely records
the value of the property verbatim.

4.2  Existing Metadata Proposals

Properties have long played an essential role in the maintenance of large document repositories, and many
current proposals contain some notion of a property, or discuss web metadata more generally. These include
PICS [REC-PICS], PICS-NG, XML, Web Collections, and several proposals on representing relationships
within HTML. Work on PICS-NG and Web Collections has been subsumed by the Resource Description
Framework (RDF) metadata activity of the World Wide Web Consortium. RDF consists of a network-based
data model and an XML representation of that model.

Some proposals come from a digital library perspective. These include the Dublin Core [RFC2413] metadata
set and the Warwick Framework [WF], a container architecture for different metadata schemas. The literature
includes many examples of metadata, including MARC [USMARC], a bibliographic metadata format, and a
technical report bibliographic format employed by the Dienst system [RFC1807]. Additionally, the proceedings
from the first IEEE Metadata conference describe many community-specific metadata sets.

Participants of the 1996 Metadata II Workshop in Warwick, UK [WF], noted that "new metadata sets will
develop as the networked infrastructure matures" and "different communities will propose, design, and be
responsible for different types of metadata." These observations can be corroborated by noting that many
community-specific sets of metadata already exist, and there is significant motivation for the development of
new forms of metadata as many communities increasingly make their data available in digital form, requiring a
metadata format to assist data location and cataloging.

4.3  Properties and HTTP Headers

Properties already exist, in a limited sense, in HTTP message headers. However, in distributed authoring
environments a relatively large number of properties are needed to describe the state of a resource, and setting/
returning them all through HTTP headers is inefficient. Thus a mechanism is needed which allows a principal
to identify a set of properties in which the principal is interested and to set or retrieve just those properties.

4.4  Property Values

The value of a property when expressed in XML MUST be well formed.

XML has been chosen because it is a flexible, self-describing, structured data format that supports rich schema
definitions, and because of its support for multiple character sets. XML's self-describing nature allows any
property's value to be extended by adding new elements. Older clients will not break when they encounter
extensions because they will still have the data specified in the original schema and will ignore elements
they do not understand. XML's support for multiple character sets allows any human-readable property to be
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encoded and read in a character set familiar to the user. XML's support for multiple human languages, using the
"xml:lang" attribute, handles cases where the same character set is employed by multiple human languages.

4.5  Property Names

A property name is a universally unique identifier that is associated with a schema that provides information
about the syntax and semantics of the property.

Because a property's name is universally unique, clients can depend upon consistent behavior for a particular
property across multiple resources, on the same and across different servers, so long as that property is "live"
on the resources in question, and the implementation of the live property is faithful to its definition.

The XML namespace mechanism, which is based on URIs [RFC2396], is used to name properties because it
prevents namespace collisions and provides for varying degrees of administrative control.

The property namespace is flat; that is, no hierarchy of properties is explicitly recognized. Thus, if a property A
and a property A/B exist on a resource, there is no recognition of any relationship between the two properties.
It is expected that a separate specification will eventually be produced which will address issues relating to
hierarchical properties.

Finally, it is not possible to define the same property twice on a single resource, as this would cause a collision
in the resource's property namespace.

4.6  Media Independent Links

Although HTML resources support links to other resources, the Web needs more general support for links
between resources of any media type (media types are also known as MIME types, or content types). WebDAV
provides such links. A WebDAV link is a special type of property value, formally defined in Section 12.4, that
allows typed connections to be established between resources of any media type. The property value consists of
source and destination Uniform Resource Identifiers (URIs); the property name identifies the link type.
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5.  Collections of Web Resources

This section provides a description of a new type of Web resource, the collection, and discusses its interactions
with the HTTP URL namespace. The purpose of a collection resource is to model collection-like objects (e.g.,
file system directories) within a server's namespace.

All DAV compliant resources MUST support the HTTP URL namespace model specified herein.

5.1  HTTP URL Namespace Model

The HTTP URL namespace is a hierarchical namespace where the hierarchy is delimited with the "/" character.

An HTTP URL namespace is said to be consistent if it meets the following conditions: for every URL in the
HTTP hierarchy there exists a collection that contains that URL as an internal member. The root, or top-level
collection of the namespace under consideration is exempt from the previous rule.

Neither HTTP/1.1 nor WebDAV require that the entire HTTP URL namespace be consistent. However, certain
WebDAV methods are prohibited from producing results that cause namespace inconsistencies.

Although implicit in [RFC2068] and [RFC2396], any resource, including collection resources, MAY be
identified by more than one URI. For example, a resource could be identified by multiple HTTP URLs.

5.2  Collection Resources

A collection is a resource whose state consists of at least a list of internal member URIs and a set of properties,
but which may have additional state such as entity bodies returned by GET. An internal member URI MUST be
immediately relative to a base URI of the collection. That is, the internal member URI is equal to a containing
collection's URI plus an additional segment for non-collection resources, or additional segment plus trailing
slash "/" for collection resources, where segment is defined in section 3.3 of [RFC2396].

Any given internal member URI MUST only belong to the collection once, i.e., it is illegal to have multiple
instances of the same URI in a collection. Properties defined on collections behave exactly as do properties on
non-collection resources.

For all WebDAV compliant resources A and B, identified by URIs U and V, for which U is immediately
relative to V, B MUST be a collection that has U as an internal member URI. So, if the resource with URL
http://foo.com/bar/blah is WebDAV compliant and if the resource with URL http://foo.com/bar/ is WebDAV
compliant then the resource with URL http://foo.com/bar/ must be a collection and must contain URL http://
foo.com/bar/blah as an internal member.

Collection resources MAY list the URLs of non-WebDAV compliant children in the HTTP URL namespace
hierarchy as internal members but are not required to do so. For example, if the resource with URL http://
foo.com/bar/blah is not WebDAV compliant and the URL http://foo.com/bar/ identifies a collection then URL
http://foo.com/bar/blah may or may not be an internal member of the collection with URL http://foo.com/bar/.

If a WebDAV compliant resource has no WebDAV compliant children in the HTTP URL namespace hierarchy
then the WebDAV compliant resource is not required to be a collection.

There is a standing convention that when a collection is referred to by its name without a trailing slash, the
trailing slash is automatically appended. Due to this, a resource may accept a URI without a trailing "/" to point
to a collection. In this case it SHOULD return a content-location header in the response pointing to the URI
ending with the "/". For example, if a client invokes a method on http://foo.bar/blah (no trailing slash), the
resource http://foo.bar/blah/ (trailing slash) may respond as if the operation were invoked on it, and should
return a content-location header with http://foo.bar/blah/ in it. In general clients SHOULD use the "/" form of
collection names.

A resource MAY be a collection but not be WebDAV compliant. That is, the resource may comply with all
the rules set out in this specification regarding how a collection is to behave without necessarily supporting all
methods that a WebDAV compliant resource is required to support. In such a case the resource may return the
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DAV:resourcetype property with the value DAV:collection but MUST NOT return a DAV header containing
the value "1" on an OPTIONS response.

5.3  Creation and Retrieval of Collection Resources

This document specifies the MKCOL method to create new collection resources, rather than using the existing
HTTP/1.1 PUT or POST method, for the following reasons:

In HTTP/1.1, the PUT method is defined to store the request body at the location specified by the Request-
URI. While a description format for a collection can readily be constructed for use with PUT, the implications
of sending such a description to the server are undesirable. For example, if a description of a collection that
omitted some existing resources were PUT to a server, this might be interpreted as a command to remove those
members. This would extend PUT to perform DELETE functionality, which is undesirable since it changes the
semantics of PUT, and makes it difficult to control DELETE functionality with an access control scheme based
on methods.

While the POST method is sufficiently open-ended that a "create a collection" POST command could be
constructed, this is undesirable because it would be difficult to separate access control for collection creation
from other uses of POST.

The exact definition of the behavior of GET and PUT on collections is defined later in this document.

5.4  Source Resources and Output Resources

For many resources, the entity returned by a GET method exactly matches the persistent state of the resource,
for example, a GIF file stored on a disk. For this simple case, the URI at which a resource is accessed is
identical to the URI at which the source (the persistent state) of the resource is accessed. This is also the case
for HTML source files that are not processed by the server prior to transmission.

However, the server can sometimes process HTML resources before they are transmitted as a return entity
body. For example, a server-side-include directive within an HTML file might instruct a server to replace the
directive with another value, such as the current date. In this case, what is returned by GET (HTML plus date)
differs from the persistent state of the resource (HTML plus directive). Typically there is no way to access the
HTML resource containing the unprocessed directive.

Sometimes the entity returned by GET is the output of a data-producing process that is described by one or
more source resources (that may not even have a location in the URI namespace). A single data-producing
process may dynamically generate the state of a potentially large number of output resources. An example of
this is a CGI script that describes a "finger" gateway process that maps part of the namespace of a server into
finger requests, such as http://www.foo.bar.org/finger_gateway/user@host.

In the absence of distributed authoring capabilities, it is acceptable to have no mapping of source resource(s)
to the URI namespace. In fact, preventing access to the source resource(s) has desirable security benefits.
However, if remote editing of the source resource(s) is desired, the source resource(s) should be given a
location in the URI namespace. This source location should not be one of the locations at which the generated
output is retrievable, since in general it is impossible for the server to differentiate requests for source resources
from requests for process output resources. There is often a many-to-many relationship between source
resources and output resources.

On WebDAV compliant servers the URI of the source resource(s) may be stored in a link on the output
resource with type DAV:source (see Section 13.10 for a description of the source link property). Storing the
source URIs in links on the output resources places the burden of discovering the source on the authoring
client. Note that the value of a source link is not guaranteed to point to the correct source. Source links may
break or incorrect values may be entered. Also note that not all servers will allow the client to set the source
link value. For example a server which generates source links on the fly for its CGI files will most likely not
allow a client to set the source link value.
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6.  Locking

The ability to lock a resource provides a mechanism for serializing access to that resource. Using a lock, an
authoring client can provide a reasonable guarantee that another principal will not modify a resource while it is
being edited. In this way, a client can prevent the "lost update" problem.

This specification allows locks to vary over two client-specified parameters, the number of principals involved
(exclusive vs. shared) and the type of access to be granted. This document defines locking for only one access
type, write. However, the syntax is extensible, and permits the eventual specification of locking for other access
types.

6.1  Exclusive Vs. Shared Locks

The most basic form of lock is an exclusive lock. This is a lock where the access right in question is only
granted to a single principal. The need for this arbitration results from a desire to avoid having to merge results.

However, there are times when the goal of a lock is not to exclude others from exercising an access right but
rather to provide a mechanism for principals to indicate that they intend to exercise their access rights. Shared
locks are provided for this case. A shared lock allows multiple principals to receive a lock. Hence any principal
with appropriate access can get the lock.

With shared locks there are two trust sets that affect a resource. The first trust set is created by access
permissions. Principals who are trusted, for example, may have permission to write to the resource. Among
those who have access permission to write to the resource, the set of principals who have taken out a shared
lock also must trust each other, creating a (typically) smaller trust set within the access permission write set.

Starting with every possible principal on the Internet, in most situations the vast majority of these principals
will not have write access to a given resource. Of the small number who do have write access, some principals
may decide to guarantee their edits are free from overwrite conflicts by using exclusive write locks. Others may
decide they trust their collaborators will not overwrite their work (the potential set of collaborators being the
set of principals who have write permission) and use a shared lock, which informs their collaborators that a
principal may be working on the resource.

The WebDAV extensions to HTTP do not need to provide all of the communications paths necessary
for principals to coordinate their activities. When using shared locks, principals may use any out of band
communication channel to coordinate their work (e.g., face-to-face interaction, written notes, post-it notes on
the screen, telephone conversation, Email, etc.) The intent of a shared lock is to let collaborators know who else
may be working on a resource.

Shared locks are included because experience from web distributed authoring systems has indicated that
exclusive locks are often too rigid. An exclusive lock is used to enforce a particular editing process: take out
an exclusive lock, read the resource, perform edits, write the resource, release the lock. This editing process
has the problem that locks are not always properly released, for example when a program crashes, or when a
lock owner leaves without unlocking a resource. While both timeouts and administrative action can be used to
remove an offending lock, neither mechanism may be available when needed; the timeout may be long or the
administrator may not be available.

6.2  Required Support

A WebDAV compliant server is not required to support locking in any form. If the server does support locking
it may choose to support any combination of exclusive and shared locks for any access types.

The reason for this flexibility is that locking policy strikes to the very heart of the resource management and
versioning systems employed by various storage repositories. These repositories require control over what
sort of locking will be made available. For example, some repositories only support shared write locks while
others only provide support for exclusive write locks while yet others use no locking at all. As each system is
sufficiently different to merit exclusion of certain locking features, this specification leaves locking as the sole
axis of negotiation within WebDAV.
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6.3  Lock Tokens

A lock token is a type of state token, represented as a URI, which identifies a particular lock. A lock token is
returned by every successful LOCK operation in the lockdiscovery property in the response body, and can also
be found through lock discovery on a resource.

Lock token URIs MUST be unique across all resources for all time. This uniqueness constraint allows lock
tokens to be submitted across resources and servers without fear of confusion.

This specification provides a lock token URI scheme called opaquelocktoken that meets the uniqueness
requirements. However resources are free to return any URI scheme so long as it meets the uniqueness
requirements.

Having a lock token provides no special access rights. Anyone can find out anyone else's lock token by
performing lock discovery. Locks MUST be enforced based upon whatever authentication mechanism is used
by the server, not based on the secrecy of the token values.

6.4  opaquelocktoken Lock Token URI Scheme

The opaquelocktoken URI scheme is designed to be unique across all resources for all time. Due to this
uniqueness quality, a client may submit an opaque lock token in an If header on a resource other than the one
that returned it.

All resources MUST recognize the opaquelocktoken scheme and, at minimum, recognize that the lock token
does not refer to an outstanding lock on the resource.

In order to guarantee uniqueness across all resources for all time the opaquelocktoken requires the use of the
Universal Unique Identifier (UUID) mechanism, as described in [ISO-11578].

Opaquelocktoken generators, however, have a choice of how they create these tokens. They can either generate
a new UUID for every lock token they create or they can create a single UUID and then add extension
characters. If the second method is selected then the program generating the extensions MUST guarantee that
the same extension will never be used twice with the associated UUID.

OpaqueLockToken-URI = "opaquelocktoken:" UUID [Extension] ; The UUID production is the string
representation of a UUID, as defined in [ISO-11578]. Note that white space (LWS) is not allowed between
elements of this production.

Extension = path ; path is defined in section 3.2.1 of RFC 2068 [RFC2068]

6.4.1  Node Field Generation Without the IEEE 802 Address

UUIDs, as defined in [ISO-11578], contain a "node" field that contains one of the IEEE 802 addresses for the
server machine. As noted in Section 17.8, there are several security risks associated with exposing a machine's
IEEE 802 address. This section provides an alternate mechanism for generating the "node" field of a UUID
which does not employ an IEEE 802 address. WebDAV servers MAY use this algorithm for creating the node
field when generating UUIDs. The text in this section is originally from an Internet-Draft by Paul Leach and
Rich Salz, who are noted here to properly attribute their work.

The ideal solution is to obtain a 47 bit cryptographic quality random number, and use it as the low 47 bits of the
node ID, with the most significant bit of the first octet of the node ID set to 1. This bit is the unicast/multicast
bit, which will never be set in IEEE 802 addresses obtained from network cards; hence, there can never be a
conflict between UUIDs generated by machines with and without network cards.

If a system does not have a primitive to generate cryptographic quality random numbers, then in most systems
there are usually a fairly large number of sources of randomness available from which one can be generated.
Such sources are system specific, but often include:

• the percent of memory in use

• the size of main memory in bytes

• the amount of free main memory in bytes
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• the size of the paging or swap file in bytes

• free bytes of paging or swap file

• the total size of user virtual address space in bytes

• the total available user address space bytes

• the size of boot disk drive in bytes

• the free disk space on boot drive in bytes

• the current time

• the amount of time since the system booted

• the individual sizes of files in various system directories

• the creation, last read, and modification times of files in various system directories

• the utilization factors of various system resources (heap, etc.)

• current mouse cursor position

• current caret position

• current number of running processes, threads

• handles or IDs of the desktop window and the active window

• the value of stack pointer of the caller

• the process and thread ID of caller

• various processor architecture specific performance counters (instructions executed, cache misses, TLB
misses)

(Note that it is precisely the above kinds of sources of randomness that are used to seed cryptographic quality
random number generators on systems without special hardware for their construction.)

In addition, items such as the computer's name and the name of the operating system, while not strictly
speaking random, will help differentiate the results from those obtained by other systems.

The exact algorithm to generate a node ID using these data is system specific, because both the data available
and the functions to obtain them are often very system specific. However, assuming that one can concatenate
all the values from the randomness sources into a buffer, and that a cryptographic hash function such as MD5
is available, then any 6 bytes of the MD5 hash of the buffer, with the multicast bit (the high bit of the first byte)
set will be an appropriately random node ID.

Other hash functions, such as SHA-1, can also be used. The only requirement is that the result be suitably
random _ in the sense that the outputs from a set uniformly distributed inputs are themselves uniformly
distributed, and that a single bit change in the input can be expected to cause half of the output bits to change.

6.5  Lock Capability Discovery

Since server lock support is optional, a client trying to lock a resource on a server can either try the lock and
hope for the best, or perform some form of discovery to determine what lock capabilities the server supports.
This is known as lock capability discovery. Lock capability discovery differs from discovery of supported
access control types, since there may be access control types without corresponding lock types. A client can
determine what lock types the server supports by retrieving the supportedlock property.

Any DAV compliant resource that supports the LOCK method MUST support the supportedlock property.

6.6  Active Lock Discovery

If another principal locks a resource that a principal wishes to access, it is useful for the second principal to be
able to find out who the first principal is. For this purpose the lockdiscovery property is provided. This property
lists all outstanding locks, describes their type, and where available, provides their lock token.

Any DAV compliant resource that supports the LOCK method MUST support the lockdiscovery property.
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6.7  Usage Considerations

Although the locking mechanisms specified here provide some help in preventing lost updates, they cannot
guarantee that updates will never be lost. Consider the following scenario:

Two clients A and B are interested in editing the resource ' index.html'. Client A is an HTTP client rather than a
WebDAV client, and so does not know how to perform locking.

Client A doesn't lock the document, but does a GET and begins editing.

Client B does LOCK, performs a GET and begins editing.

Client B finishes editing, performs a PUT, then an UNLOCK.

Client A performs a PUT, overwriting and losing all of B's changes.

There are several reasons why the WebDAV protocol itself cannot prevent this situation. First, it cannot force
all clients to use locking because it must be compatible with HTTP clients that do not comprehend locking.
Second, it cannot require servers to support locking because of the variety of repository implementations, some
of which rely on reservations and merging rather than on locking. Finally, being stateless, it cannot enforce a
sequence of operations like LOCK / GET / PUT / UNLOCK.

WebDAV servers that support locking can reduce the likelihood that clients will accidentally overwrite each
other's changes by requiring clients to lock resources before modifying them. Such servers would effectively
prevent HTTP 1.0 and HTTP 1.1 clients from modifying resources.

WebDAV clients can be good citizens by using a lock / retrieve / write /unlock sequence of operations (at least
by default) whenever they interact with a WebDAV server that supports locking.

HTTP 1.1 clients can be good citizens, avoiding overwriting other clients' changes, by using entity tags in If-
Match headers with any requests that would modify resources.

Information managers may attempt to prevent overwrites by implementing client-side procedures requiring
locking before modifying WebDAV resources.
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7.  Write Lock

This section describes the semantics specific to the write lock type. The write lock is a specific instance of a
lock type, and is the only lock type described in this specification.

7.1  Methods Restricted by Write Locks

A write lock MUST prevent a principal without the lock from successfully executing a PUT, POST,
PROPPATCH, LOCK, UNLOCK, MOVE, DELETE, or MKCOL on the locked resource. All other current
methods, GET in particular, function independently of the lock.

Note, however, that as new methods are created it will be necessary to specify how they interact with a write
lock.

7.2  Write Locks and Lock Tokens

A successful request for an exclusive or shared write lock MUST result in the generation of a unique lock token
associated with the requesting principal. Thus if five principals have a shared write lock on the same resource
there will be five lock tokens, one for each principal.

7.3  Write Locks and Properties

While those without a write lock may not alter a property on a resource it is still possible for the values of live
properties to change, even while locked, due to the requirements of their schemas. Only dead properties and
live properties defined to respect locks are guaranteed not to change while write locked.

7.4  Write Locks and Null Resources

It is possible to assert a write lock on a null resource in order to lock the name.

A write locked null resource, referred to as a lock-null resource, MUST respond with a 404 (Not Found) or 405
(Method Not Allowed) to any HTTP/1.1 or DAV methods except for PUT, MKCOL, OPTIONS, PROPFIND,
LOCK, and UNLOCK. A lock-null resource MUST appear as a member of its parent collection. Additionally
the lock-null resource MUST have defined on it all mandatory DAV properties. Most of these properties, such
as all the get* properties, will have no value as a lock-null resource does not support the GET method. Lock-
Null resources MUST have defined values for lockdiscovery and supportedlock properties.

Until a method such as PUT or MKCOL is successfully executed on the lock-null resource the resource MUST
stay in the lock-null state. However, once a PUT or MKCOL is successfully executed on a lock-null resource
the resource ceases to be in the lock-null state.

If the resource is unlocked, for any reason, without a PUT, MKCOL, or similar method having been
successfully executed upon it then the resource MUST return to the null state.

7.5  Write Locks and Collections

A write lock on a collection, whether created by a "Depth: 0" or "Depth: infinity" lock request, prevents the
addition or removal of member URIs of the collection by non-lock owners. As a consequence, when a principal
issues a PUT or POST request to create a new resource under a URI which needs to be an internal member of
a write locked collection to maintain HTTP namespace consistency, or issues a DELETE to remove a resource
which has a URI which is an existing internal member URI of a write locked collection, this request MUST fail
if the principal does not have a write lock on the collection.

However, if a write lock request is issued to a collection containing member URIs identifying resources that are
currently locked in a manner which conflicts with the write lock, the request MUST fail with a 423 (Locked)
status code.

If a lock owner causes the URI of a resource to be added as an internal member URI of a locked collection
then the new resource MUST be automatically added to the lock. This is the only mechanism that allows a
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resource to be added to a write lock. Thus, for example, if the collection /a/b/ is write locked and the resource /c
is moved to /a/b/c then resource /a/b/c will be added to the write lock.

7.6  Write Locks and the If Request Header

If a user agent is not required to have knowledge about a lock when requesting an operation on a locked
resource, the following scenario might occur. Program A, run by User A, takes out a write lock on a resource.
Program B, also run by User A, has no knowledge of the lock taken out by Program A, yet performs a PUT
to the locked resource. In this scenario, the PUT succeeds because locks are associated with a principal, not
a program, and thus program B, because it is acting with principal A's credential, is allowed to perform the
PUT. However, had program B known about the lock, it would not have overwritten the resource, preferring
instead to present a dialog box describing the conflict to the user. Due to this scenario, a mechanism is needed
to prevent different programs from accidentally ignoring locks taken out by other programs with the same
authorization.

In order to prevent these collisions a lock token MUST be submitted by an authorized principal in the If header
for all locked resources that a method may interact with or the method MUST fail. For example, if a resource is
to be moved and both the source and destination are locked then two lock tokens must be submitted, one for the
source and the other for the destination.

7.6.1  Example - Write Lock

>>Request

   COPY /~fielding/index.html HTTP/1.1
   Host: www.ics.uci.edu
   Destination: http://www.ics.uci.edu/users/f/fielding/index.html
   If: <http://www.ics.uci.edu/users/f/fielding/index.html>
       (<opaquelocktoken:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>)

>>Response

   HTTP/1.1 204 No Content

In this example, even though both the source and destination are locked, only one lock token must be
submitted, for the lock on the destination. This is because the source resource is not modified by a COPY, and
hence unaffected by the write lock. In this example, user agent authentication has previously occurred via a
mechanism outside the scope of the HTTP protocol, in the underlying transport layer.

7.7  Write Locks and COPY/MOVE

A COPY method invocation MUST NOT duplicate any write locks active on the source. However, as
previously noted, if the COPY copies the resource into a collection that is locked with "Depth: infinity", then
the resource will be added to the lock.

A successful MOVE request on a write locked resource MUST NOT move the write lock with the resource.
However, the resource is subject to being added to an existing lock at the destination, as specified in
Section 7.5. For example, if the MOVE makes the resource a child of a collection that is locked with "Depth:
infinity", then the resource will be added to that collection's lock. Additionally, if a resource locked with
"Depth: infinity" is moved to a destination that is within the scope of the same lock (e.g., within the namespace
tree covered by the lock), the moved resource will again be a added to the lock. In both these examples,
as specified in Section 7.6, an If header must be submitted containing a lock token for both the source and
destination.
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7.8  Refreshing Write Locks

A client MUST NOT submit the same write lock request twice. Note that a client is always aware it is
resubmitting the same lock request because it must include the lock token in the If header in order to make the
request for a resource that is already locked.

However, a client may submit a LOCK method with an If header but without a body. This form of LOCK
MUST only be used to "refresh" a lock. Meaning, at minimum, that any timers associated with the lock MUST
be re-set.

A server may return a Timeout header with a lock refresh that is different than the Timeout header returned
when the lock was originally requested. Additionally clients may submit Timeout headers of arbitrary value
with their lock refresh requests. Servers, as always, may ignore Timeout headers submitted by the client.

If an error is received in response to a refresh LOCK request the client SHOULD assume that the lock was not
refreshed.
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8.  HTTP Methods for Distributed Authoring

The following new HTTP methods use XML as a request and response format. All DAV compliant clients
and resources MUST use XML parsers that are compliant with [REC-XML]. All XML used in either requests
or responses MUST be, at minimum, well formed. If a server receives ill-formed XML in a request it MUST
reject the entire request with a 400 (Bad Request). If a client receives ill-formed XML in a response then it
MUST NOT assume anything about the outcome of the executed method and SHOULD treat the server as
malfunctioning.

8.1  PROPFIND

The PROPFIND method retrieves properties defined on the resource identified by the Request-URI, if the
resource does not have any internal members, or on the resource identified by the Request-URI and potentially
its member resources, if the resource is a collection that has internal member URIs. All DAV compliant
resources MUST support the PROPFIND method and the propfind XML element (section 12.14) along with all
XML elements defined for use with that element.

A client may submit a Depth header with a value of "0", "1", or "infinity" with a PROPFIND on a collection
resource with internal member URIs. DAV compliant servers MUST support the "0", "1" and "infinity"
behaviors. By default, the PROPFIND method without a Depth header MUST act as if a "Depth: infinity"
header was included.

A client may submit a propfind XML element in the body of the request method describing what information
is being requested. It is possible to request particular property values, all property values, or a list of the names
of the resource's properties. A client may choose not to submit a request body. An empty PROPFIND request
body MUST be treated as a request for the names and values of all properties.

All servers MUST support returning a response of content type text/xml or application/xml that contains a
multistatus XML element that describes the results of the attempts to retrieve the various properties.

If there is an error retrieving a property then a proper error result MUST be included in the response. A request
to retrieve the value of a property which does not exist is an error and MUST be noted, if the response uses a
multistatus XML element, with a response XML element which contains a 404 (Not Found) status value.

Consequently, the multistatus XML element for a collection resource with member URIs MUST include
a response XML element for each member URI of the collection, to whatever depth was requested. Each
response XML element MUST contain an href XML element that gives the URI of the resource on which
the properties in the prop XML element are defined. Results for a PROPFIND on a collection resource with
internal member URIs are returned as a flat list whose order of entries is not significant.

In the case of allprop and propname, if a principal does not have the right to know whether a particular property
exists then the property should be silently excluded from the response.

The results of this method SHOULD NOT be cached.
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8.1.1  Example - Retrieving Named Properties

>>Request

   PROPFIND  /file HTTP/1.1
   Host: www.foo.bar
   Content-type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:">
     <D:prop xmlns:R="http://www.foo.bar/boxschema/">
          <R:bigbox/>
          <R:author/>
          <R:DingALing/>
          <R:Random/>
     </D:prop>
   </D:propfind>

>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:multistatus xmlns:D="DAV:">
     <D:response>
          <D:href>http://www.foo.bar/file</D:href>
          <D:propstat>
               <D:prop xmlns:R="http://www.foo.bar/boxschema/">
                    <R:bigbox>
                         <R:BoxType>Box type A</R:BoxType>
                    </R:bigbox>
                    <R:author>
                         <R:Name>J.J. Johnson</R:Name>
                    </R:author>
               </D:prop>
               <D:status>HTTP/1.1 200 OK</D:status>
          </D:propstat>
          <D:propstat>
               <D:prop><R:DingALing/><R:Random/></D:prop>
               <D:status>HTTP/1.1 403 Forbidden</D:status>
               <D:responsedescription> The user does not have access to
   the DingALing property.
               </D:responsedescription>
          </D:propstat>
     </D:response>
     <D:responsedescription> There has been an access violation error.
     </D:responsedescription>
   </D:multistatus>

In this example, PROPFIND is executed on a non-collection resource http://www.foo.bar/file. The propfind
XML element specifies the name of four properties whose values are being requested. In this case only two
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properties were returned, since the principal issuing the request did not have sufficient access rights to see the
third and fourth properties.

8.1.2  Example - Using allprop to Retrieve All Properties

>>Request

   PROPFIND  /container/ HTTP/1.1
   Host: www.foo.bar
   Depth: 1
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:">
     <D:allprop/>
   </D:propfind>
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>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:multistatus xmlns:D="DAV:">
     <D:response>
          <D:href>http://www.foo.bar/container/</D:href>
          <D:propstat>
               <D:prop xmlns:R="http://www.foo.bar/boxschema/">
                    <R:bigbox>
                         <R:BoxType>Box type A</R:BoxType>
                    </R:bigbox>
                    <R:author>
                         <R:Name>Hadrian</R:Name>
                    </R:author>
                    <D:creationdate>
                         1997-12-01T17:42:21-08:00
                    </D:creationdate>
                    <D:displayname>
                         Example collection
                    </D:displayname>
                    <D:resourcetype><D:collection/></D:resourcetype>
                    <D:supportedlock>
                         <D:lockentry>
                              <D:lockscope><D:exclusive/></D:lockscope>
                              <D:locktype><D:write/></D:locktype>
                         </D:lockentry>
                         <D:lockentry>
                              <D:lockscope><D:shared/></D:lockscope>
                              <D:locktype><D:write/></D:locktype>
                         </D:lockentry>
                    </D:supportedlock>
               </D:prop>
               <D:status>HTTP/1.1 200 OK</D:status>
          </D:propstat>
     </D:response>
     <D:response>
          <D:href>http://www.foo.bar/container/front.html</D:href>
          <D:propstat>
               <D:prop xmlns:R="http://www.foo.bar/boxschema/">
                    <R:bigbox>
                         <R:BoxType>Box type B</R:BoxType>
                    </R:bigbox>
                    <D:creationdate>
                         1997-12-01T18:27:21-08:00
                    </D:creationdate>
                    <D:displayname>
                         Example HTML resource
                    </D:displayname>
                    <D:getcontentlength>
                         4525
                    </D:getcontentlength>
                    <D:getcontenttype>
                         text/html
                    </D:getcontenttype>
                    <D:getetag>
                         zzyzx
                    </D:getetag>
                    <D:getlastmodified>
                         Monday, 12-Jan-98 09:25:56 GMT
                    </D:getlastmodified>
                    <D:resourcetype/>
                    <D:supportedlock>
                         <D:lockentry>
                              <D:lockscope><D:exclusive/></D:lockscope>
                              <D:locktype><D:write/></D:locktype>
                         </D:lockentry>
                         <D:lockentry>
                              <D:lockscope><D:shared/></D:lockscope>
                              <D:locktype><D:write/></D:locktype>
                         </D:lockentry>
                    </D:supportedlock>
               </D:prop>
               <D:status>HTTP/1.1 200 OK</D:status>
          </D:propstat>
     </D:response>
   </D:multistatus>
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In this example, PROPFIND was invoked on the resource http://www.foo.bar/container/ with a Depth header
of 1, meaning the request applies to the resource and its children, and a propfind XML element containing the
allprop XML element, meaning the request should return the name and value of all properties defined on each
resource.

The resource http://www.foo.bar/container/ has six properties defined on it:

http://www.foo.bar/boxschema/bigbox, http://www.foo.bar/boxschema/author, DAV:creationdate,
DAV:displayname, DAV:resourcetype, and DAV:supportedlock.

The last four properties are WebDAV-specific, defined in Section 13. Since GET is not supported on this
resource, the get* properties (e.g., getcontentlength) are not defined on this resource. The DAV-specific
properties assert that "container" was created on December 1, 1997, at 5:42:21PM, in a time zone 8 hours
west of GMT (creationdate), has a name of "Example collection" (displayname), a collection resource type
(resourcetype), and supports exclusive write and shared write locks (supportedlock).

The resource http://www.foo.bar/container/front.html has nine properties defined on it:

http://www.foo.bar/boxschema/bigbox (another instance of the "bigbox" property type), DAV:creationdate,
DAV:displayname, DAV:getcontentlength, DAV:getcontenttype, DAV:getetag, DAV:getlastmodified,
DAV:resourcetype, and DAV:supportedlock.

The DAV-specific properties assert that "front.html" was created on December 1, 1997, at 6:27:21PM, in a
time zone 8 hours west of GMT (creationdate), has a name of "Example HTML resource" (displayname), a
content length of 4525 bytes (getcontentlength), a MIME type of "text/html" (getcontenttype), an entity tag of
"zzyzx" (getetag), was last modified on Monday, January 12, 1998, at 09:25:56 GMT (getlastmodified), has an
empty resource type, meaning that it is not a collection (resourcetype), and supports both exclusive write and
shared write locks (supportedlock).

8.1.3  Example - Using propname to Retrieve all Property Names

>>Request

   PROPFIND  /container/ HTTP/1.1
   Host: www.foo.bar
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <propfind xmlns="DAV:">
     <propname/>
   </propfind>
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>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <multistatus xmlns="DAV:">
     <response>
          <href>http://www.foo.bar/container/</href>
          <propstat>
               <prop xmlns:R="http://www.foo.bar/boxschema/">
                    <R:bigbox/>
                    <R:author/>
                    <creationdate/>
                    <displayname/>
                    <resourcetype/>
                    <supportedlock/>
               </prop>
               <status>HTTP/1.1 200 OK</status>
          </propstat>
     </response>
     <response>
          <href>http://www.foo.bar/container/front.html</href>
          <propstat>
               <prop xmlns:R="http://www.foo.bar/boxschema/">
                    <R:bigbox/>
                    <creationdate/>
                    <displayname/>
                    <getcontentlength/>
                    <getcontenttype/>
                    <getetag/>
                    <getlastmodified/>
                    <resourcetype/>
                    <supportedlock/>
               </prop>
               <status>HTTP/1.1 200 OK</status>
          </propstat>
     </response>
   </multistatus>

In this example, PROPFIND is invoked on the collection resource http://www.foo.bar/container/, with a
propfind XML element containing the propname XML element, meaning the name of all properties should be
returned. Since no Depth header is present, it assumes its default value of "infinity", meaning the name of the
properties on the collection and all its progeny should be returned.

Consistent with the previous example, resource http://www.foo.bar/container/ has six properties defined
on it, http://www.foo.bar/boxschema/bigbox, http://www.foo.bar/boxschema/author, DAV:creationdate,
DAV:displayname, DAV:resourcetype, and DAV:supportedlock.

The resource http://www.foo.bar/container/index.html, a member of the "container" collection, has nine
properties defined on it, http://www.foo.bar/boxschema/bigbox, DAV:creationdate, DAV:displayname,
DAV:getcontentlength, DAV:getcontenttype, DAV:getetag, DAV:getlastmodified, DAV:resourcetype, and
DAV:supportedlock.
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This example also demonstrates the use of XML namespace scoping, and the default namespace. Since the
"xmlns" attribute does not contain an explicit "shorthand name" (prefix) letter, the namespace applies by
default to all enclosed elements. Hence, all elements which do not explicitly state the namespace to which they
belong are members of the "DAV:" namespace schema.

8.2  PROPPATCH

The PROPPATCH method processes instructions specified in the request body to set and/or remove properties
defined on the resource identified by the Request-URI.

All DAV compliant resources MUST support the PROPPATCH method and MUST process instructions that
are specified using the propertyupdate, set, and remove XML elements of the DAV schema. Execution of
the directives in this method is, of course, subject to access control constraints. DAV compliant resources
SHOULD support the setting of arbitrary dead properties.

The request message body of a PROPPATCH method MUST contain the propertyupdate XML element.
Instruction processing MUST occur in the order instructions are received (i.e., from top to bottom). Instructions
MUST either all be executed or none executed. Thus if any error occurs during processing all executed
instructions MUST be undone and a proper error result returned. Instruction processing details can be found in
the definition of the set and remove instructions in Section 12.13.

8.2.1  Status Codes for use with 207 (Multi-Status)

The following are examples of response codes one would expect to be used in a 207 (Multi-Status) response for
this method. Note, however, that unless explicitly prohibited any 2/3/4/5xx series response code may be used in
a 207 (Multi-Status) response.

200 (OK) - The command succeeded. As there can be a mixture of sets and removes in a body, a 201 (Created)
seems inappropriate.

403 (Forbidden) - The client, for reasons the server chooses not to specify, cannot alter one of the properties.

409 (Conflict) - The client has provided a value whose semantics are not appropriate for the property. This
includes trying to set read-only properties.

423 (Locked) - The specified resource is locked and the client either is not a lock owner or the lock type
requires a lock token to be submitted and the client did not submit it.

507 (Insufficient Storage) - The server did not have sufficient space to record the property.
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8.2.2  Example - PROPPATCH

>>Request

   PROPPATCH /bar.html HTTP/1.1
   Host: www.foo.com
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propertyupdate xmlns:D="DAV:"
   xmlns:Z="http://www.w3.com/standards/z39.50/">
     <D:set>
          <D:prop>
               <Z:authors>
                    <Z:Author>Jim Whitehead</Z:Author>
                    <Z:Author>Roy Fielding</Z:Author>
               </Z:authors>
          </D:prop>
     </D:set>
     <D:remove>
          <D:prop><Z:Copyright-Owner/></D:prop>
     </D:remove>
   </D:propertyupdate>

>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:multistatus xmlns:D="DAV:"
   xmlns:Z="http://www.w3.com/standards/z39.50">
     <D:response>
          <D:href>http://www.foo.com/bar.html</D:href>
          <D:propstat>
               <D:prop><Z:Authors/></D:prop>
               <D:status>HTTP/1.1 424 Failed Dependency</D:status>
          </D:propstat>
          <D:propstat>
               <D:prop><Z:Copyright-Owner/></D:prop>
               <D:status>HTTP/1.1 409 Conflict</D:status>
          </D:propstat>
          <D:responsedescription> Copyright Owner can not be deleted or
   altered.</D:responsedescription>
     </D:response>
   </D:multistatus>

In this example, the client requests the server to set the value of the http://www.w3.com/standards/z39.50/
Authors property, and to remove the property http://www.w3.com/standards/z39.50/Copyright-Owner. Since
the Copyright-Owner property could not be removed, no property modifications occur. The 424 (Failed
Dependency) status code for the Authors property indicates this action would have succeeded if it were not for
the conflict with removing the Copyright-Owner property.
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8.3  MKCOL Method

The MKCOL method is used to create a new collection. All DAV compliant resources MUST support the
MKCOL method.

8.3.1  Request

MKCOL creates a new collection resource at the location specified by the Request-URI. If the resource
identified by the Request-URI is non-null then the MKCOL MUST fail. During MKCOL processing, a server
MUST make the Request-URI a member of its parent collection, unless the Request-URI is "/". If no such
ancestor exists, the method MUST fail. When the MKCOL operation creates a new collection resource, all
ancestors MUST already exist, or the method MUST fail with a 409 (Conflict) status code. For example, if a
request to create collection /a/b/c/d/ is made, and neither /a/b/ nor /a/b/c/ exists, the request must fail.

When MKCOL is invoked without a request body, the newly created collection SHOULD have no members.

A MKCOL request message may contain a message body. The behavior of a MKCOL request when the body
is present is limited to creating collections, members of a collection, bodies of members and properties on the
collections or members. If the server receives a MKCOL request entity type it does not support or understand it
MUST respond with a 415 (Unsupported Media Type) status code. The exact behavior of MKCOL for various
request media types is undefined in this document, and will be specified in separate documents.

8.3.2  Status Codes

Responses from a MKCOL request MUST NOT be cached as MKCOL has non-idempotent semantics.

201 (Created) - The collection or structured resource was created in its entirety.

403 (Forbidden) - This indicates at least one of two conditions: 1) the server does not allow the creation of
collections at the given location in its namespace, or 2) the parent collection of the Request-URI exists but
cannot accept members.

405 (Method Not Allowed) - MKCOL can only be executed on a deleted/non-existent resource.

409 (Conflict) - A collection cannot be made at the Request-URI until one or more intermediate collections
have been created.

415 (Unsupported Media Type)- The server does not support the request type of the body.

507 (Insufficient Storage) - The resource does not have sufficient space to record the state of the resource after
the execution of this method.

8.3.3  Example - MKCOL

This example creates a collection called /webdisc/xfiles/ on the server www.server.org.

>>Request

   MKCOL /webdisc/xfiles/ HTTP/1.1
   Host: www.server.org

>>Response

   HTTP/1.1 201 Created

8.4  GET, HEAD for Collections

The semantics of GET are unchanged when applied to a collection, since GET is defined as, "retrieve whatever
information (in the form of an entity) is identified by the Request-URI" [RFC2068]. GET when applied to a
collection may return the contents of an "index.html" resource, a human-readable view of the contents of the
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collection, or something else altogether. Hence it is possible that the result of a GET on a collection will bear
no correlation to the membership of the collection.

Similarly, since the definition of HEAD is a GET without a response message body, the semantics of HEAD
are unmodified when applied to collection resources.

8.5  POST for Collections

Since by definition the actual function performed by POST is determined by the server and often depends on
the particular resource, the behavior of POST when applied to collections cannot be meaningfully modified
because it is largely undefined. Thus the semantics of POST are unmodified when applied to a collection.

8.6  DELETE

8.6.1  DELETE for Non-Collection Resources

If the DELETE method is issued to a non-collection resource whose URIs are an internal member of one or
more collections, then during DELETE processing a server MUST remove any URI for the resource identified
by the Request-URI from collections which contain it as a member.

8.6.2  DELETE for Collections

The DELETE method on a collection MUST act as if a "Depth: infinity" header was used on it. A client MUST
NOT submit a Depth header with a DELETE on a collection with any value but infinity.

DELETE instructs that the collection specified in the Request-URI and all resources identified by its internal
member URIs are to be deleted.

If any resource identified by a member URI cannot be deleted then all of the member's ancestors MUST NOT
be deleted, so as to maintain namespace consistency.

Any headers included with DELETE MUST be applied in processing every resource to be deleted.

When the DELETE method has completed processing it MUST result in a consistent namespace.

If an error occurs with a resource other than the resource identified in the Request-URI then the response
MUST be a 207 (Multi-Status). 424 (Failed Dependency) errors SHOULD NOT be in the 207 (Multi-Status).
They can be safely left out because the client will know that the ancestors of a resource could not be deleted
when the client receives an error for the ancestor's progeny. Additionally 204 (No Content) errors SHOULD
NOT be returned in the 207 (Multi-Status). The reason for this prohibition is that 204 (No Content) is the
default success code.

8.6.2.1  Example - DELETE

>>Request

   DELETE  /container/ HTTP/1.1
   Host: www.foo.bar
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>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <d:multistatus xmlns:d="DAV:">
     <d:response>
          <d:href>http://www.foo.bar/container/resource3</d:href>
          <d:status>HTTP/1.1 423 Locked</d:status>
     </d:response>
   </d:multistatus>

In this example the attempt to delete http://www.foo.bar/container/resource3 failed because it is locked, and no
lock token was submitted with the request. Consequently, the attempt to delete http://www.foo.bar/container/
also failed. Thus the client knows that the attempt to delete http://www.foo.bar/container/ must have also failed
since the parent can not be deleted unless its child has also been deleted. Even though a Depth header has not
been included, a depth of infinity is assumed because the method is on a collection.

8.7  PUT

8.7.1  PUT for Non-Collection Resources

A PUT performed on an existing resource replaces the GET response entity of the resource. Properties defined
on the resource may be recomputed during PUT processing but are not otherwise affected. For example, if a
server recognizes the content type of the request body, it may be able to automatically extract information that
could be profitably exposed as properties.

A PUT that would result in the creation of a resource without an appropriately scoped parent collection MUST
fail with a 409 (Conflict).

8.7.2  PUT for Collections

As defined in the HTTP/1.1 specification [RFC2068], the "PUT method requests that the enclosed entity
be stored under the supplied Request-URI." Since submission of an entity representing a collection would
implicitly encode creation and deletion of resources, this specification intentionally does not define a
transmission format for creating a collection using PUT. Instead, the MKCOL method is defined to create
collections.

When the PUT operation creates a new non-collection resource all ancestors MUST already exist. If all
ancestors do not exist, the method MUST fail with a 409 (Conflict) status code. For example, if resource /a/b/c/
d.html is to be created and /a/b/c/ does not exist, then the request must fail.

8.8  COPY Method

The COPY method creates a duplicate of the source resource, identified by the Request-URI, in the destination
resource, identified by the URI in the Destination header. The Destination header MUST be present. The exact
behavior of the COPY method depends on the type of the source resource.

All WebDAV compliant resources MUST support the COPY method. However, support for the COPY method
does not guarantee the ability to copy a resource. For example, separate programs may control resources on the
same server. As a result, it may not be possible to copy a resource to a location that appears to be on the same
server.
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8.8.1  COPY for HTTP/1.1 resources

When the source resource is not a collection the result of the COPY method is the creation of a new resource
at the destination whose state and behavior match that of the source resource as closely as possible. After a
successful COPY invocation, all properties on the source resource MUST be duplicated on the destination
resource, subject to modifying headers and XML elements, following the definition for copying properties.
Since the environment at the destination may be different than at the source due to factors outside the scope of
control of the server, such as the absence of resources required for correct operation, it may not be possible to
completely duplicate the behavior of the resource at the destination. Subsequent alterations to the destination
resource will not modify the source resource. Subsequent alterations to the source resource will not modify the
destination resource.

8.8.2  COPY for Properties

The following section defines how properties on a resource are handled during a COPY operation.

Live properties SHOULD be duplicated as identically behaving live properties at the destination resource. If
a property cannot be copied live, then its value MUST be duplicated, octet-for-octet, in an identically named,
dead property on the destination resource subject to the effects of the propertybehavior XML element.

The propertybehavior XML element can specify that properties are copied on best effort, that all live properties
must be successfully copied or the method must fail, or that a specified list of live properties must be
successfully copied or the method must fail. The propertybehavior XML element is defined in Section 12.12.

8.8.3  COPY for Collections

The COPY method on a collection without a Depth header MUST act as if a Depth header with value "infinity"
was included. A client may submit a Depth header on a COPY on a collection with a value of "0" or "infinity".
DAV compliant servers MUST support the "0" and "infinity" Depth header behaviors.

A COPY of depth infinity instructs that the collection resource identified by the Request-URI is to be copied
to the location identified by the URI in the Destination header, and all its internal member resources are to be
copied to a location relative to it, recursively through all levels of the collection hierarchy.

A COPY of "Depth: 0" only instructs that the collection and its properties but not resources identified by its
internal member URIs, are to be copied.

Any headers included with a COPY MUST be applied in processing every resource to be copied with the
exception of the Destination header.

The Destination header only specifies the destination URI for the Request-URI. When applied to members
of the collection identified by the Request-URI the value of Destination is to be modified to reflect the
current location in the hierarchy. So, if the Request- URI is /a/ with Host header value http://fun.com/ and the
Destination is http://fun.com/b/ then when http://fun.com/a/c/d is processed it must use a Destination of http://
fun.com/b/c/d.

When the COPY method has completed processing it MUST have created a consistent namespace at the
destination (see Section 5.1 for the definition of namespace consistency). However, if an error occurs while
copying an internal collection, the server MUST NOT copy any resources identified by members of this
collection (i.e., the server must skip this subtree), as this would create an inconsistent namespace. After
detecting an error, the COPY operation SHOULD try to finish as much of the original copy operation as
possible (i.e., the server should still attempt to copy other subtrees and their members, that are not descendents
of an error-causing collection). So, for example, if an infinite depth copy operation is performed on collection /
a/, which contains collections /a/b/ and /a/c/, and an error occurs copying /a/b/, an attempt should still be made
to copy /a/c/. Similarly, after encountering an error copying a non-collection resource as part of an infinite
depth copy, the server SHOULD try to finish as much of the original copy operation as possible.

If an error in executing the COPY method occurs with a resource other than the resource identified in the
Request-URI then the response MUST be a 207 (Multi-Status).
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The 424 (Failed Dependency) status code SHOULD NOT be returned in the 207 (Multi-Status) response from
a COPY method. These responses can be safely omitted because the client will know that the progeny of a
resource could not be copied when the client receives an error for the parent. Additionally 201 (Created)/204
(No Content) status codes SHOULD NOT be returned as values in 207 (Multi-Status) responses from COPY
methods. They, too, can be safely omitted because they are the default success codes.

8.8.4  COPY and the Overwrite Header

If a resource exists at the destination and the Overwrite header is "T" then prior to performing the copy the
server MUST perform a DELETE with "Depth: infinity" on the destination resource. If the Overwrite header is
set to "F" then the operation will fail.

8.8.5  Status Codes

201 (Created) - The source resource was successfully copied. The copy operation resulted in the creation of a
new resource.

204 (No Content) - The source resource was successfully copied to a pre-existing destination resource.

403 (Forbidden) - The source and destination URIs are the same.

409 (Conflict) - A resource cannot be created at the destination until one or more intermediate collections have
been created.

412 (Precondition Failed) - The server was unable to maintain the liveness of the properties listed in the
propertybehavior XML element or the Overwrite header is "F" and the state of the destination resource is non-
null.

423 (Locked) - The destination resource was locked.

502 (Bad Gateway) - This may occur when the destination is on another server and the destination server
refuses to accept the resource.

507 (Insufficient Storage) - The destination resource does not have sufficient space to record the state of the
resource after the execution of this method.

8.8.6  Example - COPY with Overwrite

This example shows resource http://www.ics.uci.edu/~fielding/index.html being copied to the location http://
www.ics.uci.edu/users/f/fielding/index.html. The 204 (No Content) status code indicates the existing resource
at the destination was overwritten.

>>Request

   COPY /~fielding/index.html HTTP/1.1
   Host: www.ics.uci.edu
   Destination: http://www.ics.uci.edu/users/f/fielding/index.html

>>Response

   HTTP/1.1 204 No Content

8.8.7  Example - COPY with No Overwrite

The following example shows the same copy operation being performed, but with the Overwrite header set to
"F." A response of 412 (Precondition Failed) is returned because the destination resource has a non-null state.
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>>Request

   COPY /~fielding/index.html HTTP/1.1
   Host: www.ics.uci.edu
   Destination: http://www.ics.uci.edu/users/f/fielding/index.html
   Overwrite: F

>>Response

   HTTP/1.1 412 Precondition Failed

8.8.8  Example - COPY of a Collection

>>Request

   COPY /container/ HTTP/1.1
   Host: www.foo.bar
   Destination: http://www.foo.bar/othercontainer/
   Depth: infinity
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <d:propertybehavior xmlns:d="DAV:">
     <d:keepalive>*</d:keepalive>
   </d:propertybehavior>

>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <d:multistatus xmlns:d="DAV:">
      <d:response>
          <d:href>http://www.foo.bar/othercontainer/R2/</d:href>
          <d:status>HTTP/1.1 412 Precondition Failed</d:status>
      </d:response>
   </d:multistatus>

The Depth header is unnecessary as the default behavior of COPY on a collection is to act as if a "Depth:
infinity" header had been submitted. In this example most of the resources, along with the collection, were
copied successfully. However the collection R2 failed, most likely due to a problem with maintaining the
liveness of properties (this is specified by the propertybehavior XML element). Because there was an error
copying R2, none of R2's members were copied. However no errors were listed for those members due to the
error minimization rules given in Section 8.8.3.

8.9  MOVE Method

The MOVE operation on a non-collection resource is the logical equivalent of a copy (COPY), followed by
consistency maintenance processing, followed by a delete of the source, where all three actions are performed
atomically. The consistency maintenance step allows the server to perform updates caused by the move,
such as updating all URIs other than the Request-URI which identify the source resource, to point to the new
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destination resource. Consequently, the Destination header MUST be present on all MOVE methods and
MUST follow all COPY requirements for the COPY part of the MOVE method. All DAV compliant resources
MUST support the MOVE method. However, support for the MOVE method does not guarantee the ability to
move a resource to a particular destination.

For example, separate programs may actually control different sets of resources on the same server. Therefore,
it may not be possible to move a resource within a namespace that appears to belong to the same server.

If a resource exists at the destination, the destination resource will be DELETEd as a side-effect of the MOVE
operation, subject to the restrictions of the Overwrite header.

8.9.1  MOVE for Properties

The behavior of properties on a MOVE, including the effects of the propertybehavior XML element, MUST be
the same as specified in Section 8.8.2.

8.9.2  MOVE for Collections

A MOVE with "Depth: infinity" instructs that the collection identified by the Request-URI be moved to the
URI specified in the Destination header, and all resources identified by its internal member URIs are to be
moved to locations relative to it, recursively through all levels of the collection hierarchy.

The MOVE method on a collection MUST act as if a "Depth: infinity" header was used on it. A client MUST
NOT submit a Depth header on a MOVE on a collection with any value but "infinity".

Any headers included with MOVE MUST be applied in processing every resource to be moved with the
exception of the Destination header.

The behavior of the Destination header is the same as given for COPY on collections.

When the MOVE method has completed processing it MUST have created a consistent namespace at both
the source and destination (see section 5.1 for the definition of namespace consistency). However, if an
error occurs while moving an internal collection, the server MUST NOT move any resources identified by
members of the failed collection (i.e., the server must skip the error-causing subtree), as this would create
an inconsistent namespace. In this case, after detecting the error, the move operation SHOULD try to finish
as much of the original move as possible (i.e., the server should still attempt to move other subtrees and the
resources identified by their members, that are not descendents of an error-causing collection). So, for example,
if an infinite depth move is performed on collection /a/, which contains collections /a/b/ and /a/c/, and an error
occurs moving /a/b/, an attempt should still be made to try moving /a/c/. Similarly, after encountering an error
moving a non-collection resource as part of an infinite depth move, the server SHOULD try to finish as much
of the original move operation as possible.

If an error occurs with a resource other than the resource identified in the Request-URI then the response
MUST be a 207 (Multi-Status).

The 424 (Failed Dependency) status code SHOULD NOT be returned in the 207 (Multi-Status) response
from a MOVE method. These errors can be safely omitted because the client will know that the progeny of a
resource could not be moved when the client receives an error for the parent. Additionally 201 (Created)/204
(No Content) responses SHOULD NOT be returned as values in 207 (Multi-Status) responses from a MOVE.
These responses can be safely omitted because they are the default success codes.

8.9.3  MOVE and the Overwrite Header

If a resource exists at the destination and the Overwrite header is "T" then prior to performing the move the
server MUST perform a DELETE with "Depth: infinity" on the destination resource. If the Overwrite header is
set to "F" then the operation will fail.

8.9.4  Status Codes

201 (Created) - The source resource was successfully moved, and a new resource was created at the destination.
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204 (No Content) - The source resource was successfully moved to a pre-existing destination resource.

403 (Forbidden) - The source and destination URIs are the same.

409 (Conflict) - A resource cannot be created at the destination until one or more intermediate collections have
been created.

412 (Precondition Failed) - The server was unable to maintain the liveness of the properties listed in the
propertybehavior XML element or the Overwrite header is "F" and the state of the destination resource is non-
null.

423 (Locked) - The source or the destination resource was locked.

502 (Bad Gateway) - This may occur when the destination is on another server and the destination server
refuses to accept the resource.

8.9.5  Example - MOVE of a Non-Collection

This example shows resource http://www.ics.uci.edu/~fielding/index.html being moved to the location http://
www.ics.uci.edu/users/f/fielding/index.html. The contents of the destination resource would have been
overwritten if the destination resource had been non-null. In this case, since there was nothing at the destination
resource, the response code is 201 (Created).

>>Request

   MOVE /~fielding/index.html HTTP/1.1
   Host: www.ics.uci.edu
   Destination: http://www.ics.uci.edu/users/f/fielding/index.html

>>Response

   HTTP/1.1 201 Created
   Location: http://www.ics.uci.edu/users/f/fielding/index.html

8.9.6  Example - MOVE of a Collection

>>Request

   MOVE /container/ HTTP/1.1
   Host: www.foo.bar
   Destination: http://www.foo.bar/othercontainer/
   Overwrite: F
   If: (<opaquelocktoken:fe184f2e-6eec-41d0-c765-01adc56e6bb4>)
       (<opaquelocktoken:e454f3f3-acdc-452a-56c7-00a5c91e4b77>)
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <d:propertybehavior xmlns:d='DAV:'>
     <d:keepalive>*</d:keepalive>
   </d:propertybehavior>
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>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <d:multistatus xmlns:d='DAV:'>
     <d:response>
          <d:href>http://www.foo.bar/othercontainer/C2/</d:href>
          <d:status>HTTP/1.1 423 Locked</d:status>
     </d:response>
   </d:multistatus>

In this example the client has submitted a number of lock tokens with the request. A lock token will need to be
submitted for every resource, both source and destination, anywhere in the scope of the method, that is locked.
In this case the proper lock token was not submitted for the destination http://www.foo.bar/othercontainer/
C2/. This means that the resource /container/C2/ could not be moved. Because there was an error copying /
container/C2/, none of /container/C2's members were copied. However no errors were listed for those members
due to the error minimization rules given in Section 8.8.3. User agent authentication has previously occurred
via a mechanism outside the scope of the HTTP protocol, in an underlying transport layer.

8.10  LOCK Method

The following sections describe the LOCK method, which is used to take out a lock of any access type. These
sections on the LOCK method describe only those semantics that are specific to the LOCK method and are
independent of the access type of the lock being requested.

Any resource which supports the LOCK method MUST, at minimum, support the XML request and response
formats defined herein.

8.10.1  Operation

A LOCK method invocation creates the lock specified by the lockinfo XML element on the Request-URI. Lock
method requests SHOULD have a XML request body which contains an owner XML element for this lock
request, unless this is a refresh request. The LOCK request may have a Timeout header.

Clients MUST assume that locks may arbitrarily disappear at any time, regardless of the value given in the
Timeout header. The Timeout header only indicates the behavior of the server if "extraordinary" circumstances
do not occur. For example, an administrator may remove a lock at any time or the system may crash in such a
way that it loses the record of the lock's existence. The response MUST contain the value of the lockdiscovery
property in a prop XML element.

In order to indicate the lock token associated with a newly created lock, a Lock-Token response header MUST
be included in the response for every successful LOCK request for a new lock. Note that the Lock-Token
header would not be returned in the response for a successful refresh LOCK request because a new lock was
not created.

8.10.2  The Effect of Locks on Properties and Collections

The scope of a lock is the entire state of the resource, including its body and associated properties. As a result, a
lock on a resource MUST also lock the resource's properties.

For collections, a lock also affects the ability to add or remove members. The nature of the effect depends upon
the type of access control involved.
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8.10.3  Locking Replicated Resources

A resource may be made available through more than one URI. However locks apply to resources, not URIs.
Therefore a LOCK request on a resource MUST NOT succeed if can not be honored by all the URIs through
which the resource is addressable.

8.10.4  Depth and Locking

The Depth header may be used with the LOCK method. Values other than 0 or infinity MUST NOT be used
with the Depth header on a LOCK method. All resources that support the LOCK method MUST support the
Depth header.

A Depth header of value 0 means to just lock the resource specified by the Request-URI.

If the Depth header is set to infinity then the resource specified in the Request-URI along with all its internal
members, all the way down the hierarchy, are to be locked. A successful result MUST return a single lock
token which represents all the resources that have been locked. If an UNLOCK is successfully executed on
this token, all associated resources are unlocked. If the lock cannot be granted to all resources, a 409 (Conflict)
status code MUST be returned with a response entity body containing a multistatus XML element describing
which resource(s) prevented the lock from being granted. Hence, partial success is not an option. Either the
entire hierarchy is locked or no resources are locked.

If no Depth header is submitted on a LOCK request then the request MUST act as if a "Depth:infinity" had
been submitted.

8.10.5  Interaction with other Methods

The interaction of a LOCK with various methods is dependent upon the lock type. However, independent of
lock type, a successful DELETE of a resource MUST cause all of its locks to be removed.

8.10.6  Lock Compatibility Table

The table below describes the behavior that occurs when a lock request is made on a resource.

Current lock state / Lock
request

Shared Lock Exclusive Lock

None True True
Shared Lock True False
Exclusive Lock False False*

Legend: True = lock may be granted. False = lock MUST NOT be granted. *=It is illegal for a principal to
request the same lock twice.

The current lock state of a resource is given in the leftmost column, and lock requests are listed in the first row.
The intersection of a row and column gives the result of a lock request. For example, if a shared lock is held on
a resource, and an exclusive lock is requested, the table entry is "false", indicating the lock must not be granted.

8.10.7  Status Codes

200 (OK) - The lock request succeeded and the value of the lockdiscovery property is included in the body.

412 (Precondition Failed) - The included lock token was not enforceable on this resource or the server could
not satisfy the request in the lockinfo XML element.

423 (Locked) - The resource is locked, so the method has been rejected.
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8.10.8  Example - Simple Lock Request

>>Request

   LOCK /workspace/webdav/proposal.doc HTTP/1.1
   Host: webdav.sb.aol.com
   Timeout: Infinite, Second-4100000000
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx
   Authorization: Digest username="ejw",
      realm="ejw@webdav.sb.aol.com", nonce="...",
      uri="/workspace/webdav/proposal.doc",
      response="...", opaque="..."

   <?xml version="1.0" encoding="utf-8" ?>
   <D:lockinfo xmlns:D='DAV:'>
     <D:lockscope><D:exclusive/></D:lockscope>
     <D:locktype><D:write/></D:locktype>
     <D:owner>
          <D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>
     </D:owner>
   </D:lockinfo>

>>Response

   HTTP/1.1 200 OK
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:prop xmlns:D="DAV:">
     <D:lockdiscovery>
          <D:activelock>
               <D:locktype><D:write/></D:locktype>
               <D:lockscope><D:exclusive/></D:lockscope>
               <D:depth>Infinity</D:depth>
               <D:owner>
                    <D:href>
                         http://www.ics.uci.edu/~ejw/contact.html
                    </D:href>
               </D:owner>
               <D:timeout>Second-604800</D:timeout>
               <D:locktoken>
                    <D:href>
               opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4
                    </D:href>
               </D:locktoken>
          </D:activelock>
     </D:lockdiscovery>
   </D:prop>

This example shows the successful creation of an exclusive write lock on resource http://webdav.sb.aol.com/
workspace/webdav/proposal.doc. The resource http://www.ics.uci.edu/~ejw/contact.html contains contact
information for the owner of the lock. The server has an activity-based timeout policy in place on this resource,
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which causes the lock to automatically be removed after 1 week (604800 seconds). Note that the nonce,
response, and opaque fields have not been calculated in the Authorization request header.

8.10.9  Example - Refreshing a Write Lock

>>Request

   LOCK /workspace/webdav/proposal.doc HTTP/1.1
   Host: webdav.sb.aol.com
   Timeout: Infinite, Second-4100000000
   If: (<opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4>)
   Authorization: Digest username="ejw",
      realm="ejw@webdav.sb.aol.com", nonce="...",
      uri="/workspace/webdav/proposal.doc",
      response="...", opaque="..."

>>Response

   HTTP/1.1 200 OK
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:prop xmlns:D="DAV:">
     <D:lockdiscovery>
          <D:activelock>
               <D:locktype><D:write/></D:locktype>
               <D:lockscope><D:exclusive/></D:lockscope>
               <D:depth>Infinity</D:depth>
               <D:owner>
                    <D:href>
                    http://www.ics.uci.edu/~ejw/contact.html
                    </D:href>
               </D:owner>
               <D:timeout>Second-604800</D:timeout>
               <D:locktoken>
                    <D:href>
               opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6be4
                    </D:href>
               </D:locktoken>
          </D:activelock>
     </D:lockdiscovery>
   </D:prop>

This request would refresh the lock, resetting any time outs. Notice that the client asked for an infinite time out
but the server choose to ignore the request. In this example, the nonce, response, and opaque fields have not
been calculated in the Authorization request header.
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8.10.10  Example - Multi-Resource Lock Request

>>Request

   LOCK /webdav/ HTTP/1.1
   Host: webdav.sb.aol.com
   Timeout: Infinite, Second-4100000000
   Depth: infinity
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx
   Authorization: Digest username="ejw",
      realm="ejw@webdav.sb.aol.com", nonce="...",
      uri="/workspace/webdav/proposal.doc",
      response="...", opaque="..."

   <?xml version="1.0" encoding="utf-8" ?>
   <D:lockinfo xmlns:D="DAV:">
     <D:locktype><D:write/></D:locktype>
     <D:lockscope><D:exclusive/></D:lockscope>
     <D:owner>
          <D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>
     </D:owner>
   </D:lockinfo>

>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:multistatus xmlns:D="DAV:">
     <D:response>
          <D:href>http://webdav.sb.aol.com/webdav/secret</D:href>
          <D:status>HTTP/1.1 403 Forbidden</D:status>
     </D:response>
     <D:response>
          <D:href>http://webdav.sb.aol.com/webdav/</D:href>
          <D:propstat>
               <D:prop><D:lockdiscovery/></D:prop>
               <D:status>HTTP/1.1 424 Failed Dependency</D:status>
          </D:propstat>
     </D:response>
   </D:multistatus>

This example shows a request for an exclusive write lock on a collection and all its children. In this request, the
client has specified that it desires an infinite length lock, if available, otherwise a timeout of 4.1 billion seconds,
if available. The request entity body contains the contact information for the principal taking out the lock, in
this case a web page URL.

The error is a 403 (Forbidden) response on the resource http://webdav.sb.aol.com/webdav/secret. Because this
resource could not be locked, none of the resources were locked. Note also that the lockdiscovery property for
the Request-URI has been included as required. In this example the lockdiscovery property is empty which
means that there are no outstanding locks on the resource.
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In this example, the nonce, response, and opaque fields have not been calculated in the Authorization request
header.

8.11  UNLOCK Method

The UNLOCK method removes the lock identified by the lock token in the Lock-Token request header from
the Request-URI, and all other resources included in the lock. If all resources which have been locked under the
submitted lock token can not be unlocked then the UNLOCK request MUST fail.

Any DAV compliant resource which supports the LOCK method MUST support the UNLOCK method.

8.11.1  Example - UNLOCK

>>Request

   UNLOCK /workspace/webdav/info.doc HTTP/1.1
   Host: webdav.sb.aol.com
   Lock-Token: <opaquelocktoken:a515cfa4-5da4-22e1-f5b5-00a0451e6bf7>
   Authorization: Digest username="ejw",
      realm="ejw@webdav.sb.aol.com", nonce="...",
      uri="/workspace/webdav/proposal.doc",
      response="...", opaque="..."

>>Response

   HTTP/1.1 204 No Content

In this example, the lock identified by the lock token "opaquelocktoken:a515cfa4-5da4-22e1-
f5b5-00a0451e6bf7" is successfully removed from the resource http://webdav.sb.aol.com/workspace/webdav/
info.doc. If this lock included more than just one resource, the lock is removed from all resources included
in the lock. The 204 (No Content) status code is used instead of 200 (OK) because there is no response entity
body.

In this example, the nonce, response, and opaque fields have not been calculated in the Authorization request
header.
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9.  HTTP Headers for Distributed Authoring

9.1  DAV Header

   DAV = "DAV" ":" "1" ["," "2"] ["," 1#extend]

This header indicates that the resource supports the DAV schema and protocol as specified. All DAV compliant
resources MUST return the DAV header on all OPTIONS responses.

The value is a list of all compliance classes that the resource supports. Note that above a comma has already
been added to the 2. This is because a resource can not be level 2 compliant unless it is also level 1 compliant.
Please refer to Section 15 for more details. In general, however, support for one compliance class does not
entail support for any other.

9.2  Depth Header

   Depth = "Depth" ":" ("0" | "1" | "infinity")

The Depth header is used with methods executed on resources which could potentially have internal members
to indicate whether the method is to be applied only to the resource ("Depth: 0"), to the resource and its
immediate children, ("Depth: 1"), or the resource and all its progeny ("Depth: infinity").

The Depth header is only supported if a method's definition explicitly provides for such support.

The following rules are the default behavior for any method that supports the Depth header. A method may
override these defaults by defining different behavior in its definition.

Methods which support the Depth header may choose not to support all of the header's values and may define,
on a case by case basis, the behavior of the method if a Depth header is not present. For example, the MOVE
method only supports "Depth: infinity" and if a Depth header is not present will act as if a "Depth: infinity"
header had been applied.

Clients MUST NOT rely upon methods executing on members of their hierarchies in any particular order or on
the execution being atomic unless the particular method explicitly provides such guarantees.

Upon execution, a method with a Depth header will perform as much of its assigned task as possible and then
return a response specifying what it was able to accomplish and what it failed to do.

So, for example, an attempt to COPY a hierarchy may result in some of the members being copied and some
not.

Any headers on a method that has a defined interaction with the Depth header MUST be applied to all
resources in the scope of the method except where alternative behavior is explicitly defined. For example, an
If-Match header will have its value applied against every resource in the method's scope and will cause the
method to fail if the header fails to match.

If a resource, source or destination, within the scope of the method with a Depth header is locked in such a way
as to prevent the successful execution of the method, then the lock token for that resource MUST be submitted
with the request in the If request header.

The Depth header only specifies the behavior of the method with regards to internal children. If a resource does
not have internal children then the Depth header MUST be ignored.

Please note, however, that it is always an error to submit a value for the Depth header that is not allowed by
the method's definition. Thus submitting a "Depth: 1" on a COPY, even if the resource does not have internal
members, will result in a 400 (Bad Request). The method should fail not because the resource doesn't have
internal members, but because of the illegal value in the header.
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9.3  Destination Header

   Destination = "Destination" ":" absoluteURI

The Destination header specifies the URI which identifies a destination resource for methods such as
COPY and MOVE, which take two URIs as parameters. Note that the absoluteURI production is defined in
[RFC2396].

9.4  If Header

   If = "If" ":" ( 1*No-tag-list | 1*Tagged-list)
   No-tag-list = List
   Tagged-list = Resource 1*List
   Resource = Coded-URL
   List = "(" 1*(["Not"](State-token | "[" entity-tag "]")) ")"
   State-token = Coded-URL
   Coded-URL = "<" absoluteURI ">"

The If header is intended to have similar functionality to the If-Match header defined in section 14.25 of
[RFC2068]. However the If header is intended for use with any URI which represents state information,
referred to as a state token, about a resource as well as ETags. A typical example of a state token is a lock
token, and lock tokens are the only state tokens defined in this specification.

All DAV compliant resources MUST honor the If header.

The If header's purpose is to describe a series of state lists. If the state of the resource to which the header is
applied does not match any of the specified state lists then the request MUST fail with a 412 (Precondition
Failed). If one of the described state lists matches the state of the resource then the request may succeed.

Note that the absoluteURI production is defined in [RFC2396].

9.4.1  No-tag-list Production

The No-tag-list production describes a series of state tokens and ETags. If multiple No-tag-list productions are
used then one only needs to match the state of the resource for the method to be allowed to continue.

If a method, due to the presence of a Depth or Destination header, is applied to multiple resources then the No-
tag-list production MUST be applied to each resource the method is applied to.

9.4.1.1  Example - No-tag-list If Header

   If: (<locktoken:a-write-lock-token> ["I am an ETag"]) (["I am another
   ETag"])

The previous header would require that any resources within the scope of the method must either be locked
with the specified lock token and in the state identified by the "I am an ETag" ETag or in the state identified by
the second ETag "I am another ETag". To put the matter more plainly one can think of the previous If header as
being in the form (or (and <locktoken:a-write-lock-token> ["I am an ETag"]) (and ["I am another ETag"])).

9.4.2  Tagged-list Production

The tagged-list production scopes a list production. That is, it specifies that the lists following the resource
specification only apply to the specified resource. The scope of the resource production begins with the list
production immediately following the resource production and ends with the next resource production, if any.

When the If header is applied to a particular resource, the Tagged-list productions MUST be searched to
determine if any of the listed resources match the operand resource(s) for the current method. If none of the
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resource productions match the current resource then the header MUST be ignored. If one of the resource
productions does match the name of the resource under consideration then the list productions following the
resource production MUST be applied to the resource in the manner specified in the previous section.

The same URI MUST NOT appear more than once in a resource production in an If header.

9.4.2.1  Example - Tagged List If header

   COPY /resource1 HTTP/1.1
   Host: www.foo.bar
   Destination: http://www.foo.bar/resource2
   If: <http://www.foo.bar/resource1> (<locktoken:a-write-lock-token>
   [W/"A weak ETag"]) (["strong ETag"])
   <http://www.bar.bar/random>(["another strong ETag"])

In this example http://www.foo.bar/resource1 is being copied to http://www.foo.bar/resource2. When
the method is first applied to http://www.foo.bar/resource1, resource1 must be in the state specified by
"(<locktoken:a-write-lock-token> [W/"A weak ETag"]) (["strong ETag"])", that is, it either must be locked
with a lock token of "locktoken:a-write-lock-token" and have a weak entity tag W/"A weak ETag" or it must
have a strong entity tag "strong ETag".

That is the only success condition since the resource http://www.bar.bar/random never has the method applied
to it (the only other resource listed in the If header) and http://www.foo.bar/resource2 is not listed in the If
header.

9.4.3  not Production

Every state token or ETag is either current, and hence describes the state of a resource, or is not current, and
does not describe the state of a resource. The boolean operation of matching a state token or ETag to the current
state of a resource thus resolves to a true or false value. The not production is used to reverse that value. The
scope of the not production is the state-token or entity-tag immediately following it.

   If: (Not <locktoken:write1> <locktoken:write2>)

When submitted with a request, this If header requires that all operand resources must not be locked with
locktoken:write1 and must be locked with locktoken:write2.

9.4.4  Matching Function

When performing If header processing, the definition of a matching state token or entity tag is as follows.

Matching entity tag: Where the entity tag matches an entity tag associated with that resource.

Matching state token: Where there is an exact match between the state token in the If header and any state
token on the resource.

9.4.5  If Header and Non-DAV Compliant Proxies

Non-DAV compliant proxies will not honor the If header, since they will not understand the If header, and
HTTP requires non-understood headers to be ignored. When communicating with HTTP/1.1 proxies, the
"Cache-Control: no-cache" request header MUST be used so as to prevent the proxy from improperly trying to
service the request from its cache. When dealing with HTTP/1.0 proxies the "Pragma: no-cache" request header
MUST be used for the same reason.

9.5  Lock-Token Header

   Lock-Token = "Lock-Token" ":" Coded-URL
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The Lock-Token request header is used with the UNLOCK method to identify the lock to be removed. The lock
token in the Lock-Token request header MUST identify a lock that contains the resource identified by Request-
URI as a member.

The Lock-Token response header is used with the LOCK method to indicate the lock token created as a result
of a successful LOCK request to create a new lock.

9.6  Overwrite Header

   Overwrite = "Overwrite" ":" ("T" | "F")

The Overwrite header specifies whether the server should overwrite the state of a non-null destination resource
during a COPY or MOVE. A value of "F" states that the server must not perform the COPY or MOVE
operation if the state of the destination resource is non-null. If the overwrite header is not included in a COPY
or MOVE request then the resource MUST treat the request as if it has an overwrite header of value "T". While
the Overwrite header appears to duplicate the functionality of the If-Match: * header of HTTP/1.1, If-Match
applies only to the Request-URI, and not to the Destination of a COPY or MOVE.

If a COPY or MOVE is not performed due to the value of the Overwrite header, the method MUST fail with a
412 (Precondition Failed) status code.

All DAV compliant resources MUST support the Overwrite header.

9.7  Status-URI Response Header

The Status-URI response header may be used with the 102 (Processing) status code to inform the client as to
the status of a method.

   Status-URI = "Status-URI" ":" *(Status-Code Coded-URL) ; Status-Code
   is defined in Section 6.1.1 of [RFC2068]

The URIs listed in the header are source resources which have been affected by the outstanding method. The
status code indicates the resolution of the method on the identified resource. So, for example, if a MOVE
method on a collection is outstanding and a 102 (Processing) response with a Status-URI response header is
returned, the included URIs will indicate resources that have had move attempted on them and what the result
was.

9.8  Timeout Request Header

   TimeOut = "Timeout" ":" 1#TimeType
   TimeType = ("Second-" DAVTimeOutVal | "Infinite" | Other)
   DAVTimeOutVal = 1*digit
   Other = "Extend" field-value   ; See section 4.2 of [RFC2068]

Clients may include Timeout headers in their LOCK requests. However, the server is not required to honor or
even consider these requests. Clients MUST NOT submit a Timeout request header with any method other than
a LOCK method.

A Timeout request header MUST contain at least one TimeType and may contain multiple TimeType entries.
The purpose of listing multiple TimeType entries is to indicate multiple different values and value types that
are acceptable to the client. The client lists the TimeType entries in order of preference.

Timeout response values MUST use a Second value, Infinite, or a TimeType the client has indicated familiarity
with. The server may assume a client is familiar with any TimeType submitted in a Timeout header.
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The "Second" TimeType specifies the number of seconds that will elapse between granting of the lock at the
server, and the automatic removal of the lock. The timeout value for TimeType "Second" MUST NOT be
greater than 2^32-1.

The timeout counter SHOULD be restarted any time an owner of the lock sends a method to any member of
the lock, including unsupported methods, or methods which are unsuccessful. However the lock MUST be
refreshed if a refresh LOCK method is successfully received.

If the timeout expires then the lock may be lost. Specifically, if the server wishes to harvest the lock upon time-
out, the server SHOULD act as if an UNLOCK method was executed by the server on the resource using the
lock token of the timed-out lock, performed with its override authority. Thus logs should be updated with the
disposition of the lock, notifications should be sent, etc., just as they would be for an UNLOCK request.

Servers are advised to pay close attention to the values submitted by clients, as they will be indicative of the
type of activity the client intends to perform. For example, an applet running in a browser may need to lock a
resource, but because of the instability of the environment within which the applet is running, the applet may be
turned off without warning. As a result, the applet is likely to ask for a relatively small timeout value so that if
the applet dies, the lock can be quickly harvested. However, a document management system is likely to ask for
an extremely long timeout because its user may be planning on going off-line.

A client MUST NOT assume that just because the time-out has expired the lock has been lost.
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10.  Status Code Extensions to HTTP/1.1

The following status codes are added to those defined in HTTP/1.1 [RFC2068].

10.1  102 Processing

The 102 (Processing) status code is an interim response used to inform the client that the server has accepted
the complete request, but has not yet completed it. This status code SHOULD only be sent when the server has
a reasonable expectation that the request will take significant time to complete. As guidance, if a method is
taking longer than 20 seconds (a reasonable, but arbitrary value) to process the server SHOULD return a 102
(Processing) response. The server MUST send a final response after the request has been completed.

Methods can potentially take a long period of time to process, especially methods that support the Depth
header. In such cases the client may time-out the connection while waiting for a response. To prevent this the
server may return a 102 (Processing) status code to indicate to the client that the server is still processing the
method.

10.2  207 Multi-Status

The 207 (Multi-Status) status code provides status for multiple independent operations (see Section 11 for more
information).

10.3  422 Unprocessable Entity

The 422 (Unprocessable Entity) status code means the server understands the content type of the request entity
(hence a 415(Unsupported Media Type) status code is inappropriate), and the syntax of the request entity
is correct (thus a 400 (Bad Request) status code is inappropriate) but was unable to process the contained
instructions. For example, this error condition may occur if an XML request body contains well-formed (i.e.,
syntactically correct), but semantically erroneous XML instructions.

10.4  423 Locked

The 423 (Locked) status code means the source or destination resource of a method is locked.

10.5  424 Failed Dependency

The 424 (Failed Dependency) status code means that the method could not be performed on the resource
because the requested action depended on another action and that action failed. For example, if a command
in a PROPPATCH method fails then, at minimum, the rest of the commands will also fail with 424 (Failed
Dependency).

10.6  507 Insufficient Storage

The 507 (Insufficient Storage) status code means the method could not be performed on the resource because
the server is unable to store the representation needed to successfully complete the request. This condition is
considered to be temporary. If the request which received this status code was the result of a user action, the
request MUST NOT be repeated until it is requested by a separate user action.
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11.  Multi-Status Response

The default 207 (Multi-Status) response body is a text/xml or application/xml HTTP entity that contains a
single XML element called multistatus, which contains a set of XML elements called response which contain
200, 300, 400, and 500 series status codes generated during the method invocation. 100 series status codes
SHOULD NOT be recorded in a response XML element.
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12.  XML Element Definitions

In the section below, the final line of each section gives the element type declaration using the format defined
in [REC-XML]. The "Value" field, where present, specifies further restrictions on the allowable contents of the
XML element using BNF (i.e., to further restrict the values of a PCDATA element).

12.1  activelock XML Element

Name: activelock

Namespace: DAV:

Purpose: Describes a lock on a resource.

   <!ELEMENT activelock (lockscope, locktype, depth, owner?, timeout?,
   locktoken?) >

12.1.1  depth XML Element

Name: depth

Namespace: DAV:

Purpose: The value of the Depth header.

Value: "0" | "1" | "infinity"

   <!ELEMENT depth (#PCDATA) >

12.1.2  locktoken XML Element

Name: locktoken

Namespace: DAV:

Purpose: The lock token associated with a lock.

Description: The href contains one or more opaque lock token URIs which all refer to the same lock
(i.e., the OpaqueLockToken-URI production in Section 6.4).

   <!ELEMENT locktoken (href+) >

12.1.3  timeout XML Element

Name: timeout

Namespace: DAV:

Purpose: The timeout associated with a lock

Value: TimeType ;Defined in Section 9.8

   <!ELEMENT timeout (#PCDATA) >

12.2  collection XML Element

Name: collection

Namespace: DAV:
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Purpose: Identifies the associated resource as a collection. The resourcetype property of a collection
resource MUST have this value.

   <!ELEMENT collection EMPTY >

12.3  href XML Element

Name: href

Namespace: DAV:

Purpose: Identifies the content of the element as a URI.

Value: URI ; See section 3.2.1 of [RFC2068]

   <!ELEMENT href (#PCDATA)>

12.4  link XML Element

Name: link

Namespace: DAV:

Purpose: Identifies the property as a link and contains the source and destination of that link.

Description: The link XML element is used to provide the sources and destinations of a link. The
name of the property containing the link XML element provides the type of the link.
Link is a multi-valued element, so multiple links may be used together to indicate
multiple links with the same type. The values in the href XML elements inside the src
and dst XML elements of the link XML element MUST NOT be rejected if they point
to resources which do not exist.

   <!ELEMENT link (src+, dst+) >

12.4.1  dst XML Element

Name: dst

Namespace: DAV:

Purpose: Indicates the destination of a link

Value: URI

   <!ELEMENT dst (#PCDATA) >

12.4.2  src XML Element

Name: src

Namespace: DAV:

Purpose: Indicates the source of a link.

Value: URI

   <!ELEMENT src (#PCDATA) >

12.5  lockentry XML Element
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Name: lockentry

Namespace: DAV:

Purpose: Defines the types of locks that can be used with the resource.

   <!ELEMENT lockentry (lockscope, locktype) >

12.6  lockinfo XML Element

Name: lockinfo

Namespace: DAV:

Purpose: The lockinfo XML element is used with a LOCK method to specify the type of lock the
client wishes to have created.

   <!ELEMENT lockinfo (lockscope, locktype, owner?) >

12.7  lockscope XML Element

Name: lockscope

Namespace: DAV:

Purpose: Specifies whether a lock is an exclusive lock, or a shared lock.

   <!ELEMENT lockscope (exclusive | shared) >

12.7.1  exclusive XML Element

Name: exclusive

Namespace: DAV:

Purpose: Specifies an exclusive lock

   <!ELEMENT exclusive EMPTY >

12.7.2  shared XML Element

Name: shared

Namespace: DAV:

Purpose: Specifies a shared lock

   <!ELEMENT shared EMPTY >

12.8  locktype XML Element

Name: locktype

Namespace: DAV:

Purpose: Specifies the access type of a lock. At present, this specification only defines one lock type,
the write lock.

   <!ELEMENT locktype (write) >
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12.8.1  write XML Element

Name: write

Namespace: DAV:

Purpose: Specifies a write lock.

   <!ELEMENT write EMPTY >

12.9  multistatus XML Element

Name: multistatus

Namespace: DAV:

Purpose: Contains multiple response messages.

Description: The responsedescription at the top level is used to provide a general message describing
the overarching nature of the response. If this value is available an application may
use it instead of presenting the individual response descriptions contained within the
responses.

   <!ELEMENT multistatus (response+, responsedescription?) >

12.9.1  response XML Element

Name: response

Namespace: DAV:

Purpose: Holds a single response describing the effect of a method on resource and/or its
properties.

Description: A particular href MUST NOT appear more than once as the child of a response XML
element under a multistatus XML element. This requirement is necessary in order to
keep processing costs for a response to linear time. Essentially, this prevents having
to search in order to group together all the responses by href. There are, however, no
requirements regarding ordering based on href values.

   <!ELEMENT response (href, ((href*, status)|(propstat+)),
   responsedescription?) >

12.9.1.1  propstat XML Element

Name: propstat

Namespace: DAV:

Purpose: Groups together a prop and status element that is associated with a particular href
element.

Description: The propstat XML element MUST contain one prop XML element and one status
XML element. The contents of the prop XML element MUST only list the names of
properties to which the result in the status element applies.

   <!ELEMENT propstat (prop, status, responsedescription?) >

12.9.1.2  status XML Element
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Name: status

Namespace: DAV:

Purpose: Holds a single HTTP status-line

Value: status-line ;status-line defined in [RFC2068]

   <!ELEMENT status (#PCDATA) >

12.9.2  responsedescription XML Element

Name: responsedescription

Namespace: DAV:

Purpose: Contains a message that can be displayed to the user explaining the nature of the
response.

Description: This XML element provides information suitable to be presented to a user.

   <!ELEMENT responsedescription (#PCDATA) >

12.10  owner XML Element

Name: owner

Namespace: DAV:

Purpose: Provides information about the principal taking out a lock.

Description: The owner XML element provides information sufficient for either directly contacting
a principal (such as a telephone number or Email URI), or for discovering the principal
(such as the URL of a homepage) who owns a lock.

   <!ELEMENT owner ANY>

12.11  prop XML element

Name: prop

Namespace: DAV:

Purpose: Contains properties related to a resource.

Description: The prop XML element is a generic container for properties defined on resources. All
elements inside a prop XML element MUST define properties related to the resource.
No other elements may be used inside of a prop element.

   <!ELEMENT prop ANY>

12.12  propertybehavior XML element

Name: propertybehavior

Namespace: DAV:

Purpose: Specifies how properties are handled during a COPY or MOVE.

Description: The propertybehavior XML element specifies how properties are handled during
a COPY or MOVE. If this XML element is not included in the request body then
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the server is expected to act as defined by the default property handling behavior
of the associated method. All WebDAV compliant resources MUST support the
propertybehavior XML element.

   <!ELEMENT propertybehavior (omit | keepalive) >

12.12.1  keepalive XML element

Name: keepalive

Namespace: DAV:

Purpose: Specifies requirements for the copying/moving of live properties.

Description: If a list of URIs is included as the value of keepalive then the named properties MUST
be "live" after they are copied (moved) to the destination resource of a COPY (or
MOVE). If the value "*" is given for the keepalive XML element, this designates
that all live properties on the source resource MUST be live on the destination. If the
requirements specified by the keepalive element can not be honored then the method
MUST fail with a 412 (Precondition Failed). All DAV compliant resources MUST
support the keepalive XML element for use with the COPY and MOVE methods.

Value: "*" ; #PCDATA value can only be "*"

   <!ELEMENT keepalive (#PCDATA | href+) >

12.12.2  omit XML element

Name: omit

Namespace: DAV:

Purpose: The omit XML element instructs the server that it should use best effort to copy
properties but a failure to copy a property MUST NOT cause the method to fail.

Description: The default behavior for a COPY or MOVE is to copy/move all properties or fail the
method. In certain circumstances, such as when a server copies a resource over another
protocol such as FTP, it may not be possible to copy/move the properties associated
with the resource. Thus any attempt to copy/move over FTP would always have to
fail because properties could not be moved over, even as dead properties. All DAV
compliant resources MUST support the omit XML element on COPY/MOVE methods.

   <!ELEMENT omit EMPTY >

12.13  propertyupdate XML element

Name: propertyupdate

Namespace: DAV:

Purpose: Contains a request to alter the properties on a resource.

Description: This XML element is a container for the information required to modify the properties
on the resource. This XML element is multi-valued.

   <!ELEMENT propertyupdate (remove | set)+ >

12.13.1  remove XML element
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Name: remove

Namespace: DAV:

Purpose: Lists the DAV properties to be removed from a resource.

Description: Remove instructs that the properties specified in prop should be removed. Specifying
the removal of a property that does not exist is not an error. All the XML elements in
a prop XML element inside of a remove XML element MUST be empty, as only the
names of properties to be removed are required.

   <!ELEMENT remove (prop) >

12.13.2  set XML element

Name: set

Namespace: DAV:

Purpose: Lists the DAV property values to be set for a resource.

Description: The set XML element MUST contain only a prop XML element. The elements
contained by the prop XML element inside the set XML element MUST specify the
name and value of properties that are set on the resource identified by Request-URI. If
a property already exists then its value is replaced. Language tagging information in the
property's value (in the "xml:lang" attribute, if present) MUST be persistently stored
along with the property, and MUST be subsequently retrievable using PROPFIND.

   <!ELEMENT set (prop) >

12.14  propfind XML Element

Name: propfind

Namespace: DAV:

Purpose: Specifies the properties to be returned from a PROPFIND method. Two special elements
are specified for use with propfind, allprop and propname. If prop is used inside propfind it
MUST only contain property names, not values.

   <!ELEMENT propfind (allprop | propname | prop) >

12.14.1  allprop XML Element

Name: allprop

Namespace: DAV:

Purpose: The allprop XML element specifies that all property names and values on the resource are
to be returned.

   <!ELEMENT allprop EMPTY >

12.14.2  propname XML Element

Name: propname

Namespace: DAV:
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Purpose: The propname XML element specifies that only a list of property names on the resource is
to be returned.

   <!ELEMENT propname EMPTY >
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13.  DAV Properties

For DAV properties, the name of the property is also the same as the name of the XML element that contains
its value. In the section below, the final line of each section gives the element type declaration using the format
defined in [REC-XML]. The "Value" field, where present, specifies further restrictions on the allowable
contents of the XML element using BNF (i.e., to further restrict the values of a PCDATA element).

13.1  creationdate Property

Name: creationdate

Namespace: DAV:

Purpose: Records the time and date the resource was created.

Value: date-time ; See Appendix 23.2

Description: The creationdate property should be defined on all DAV compliant resources. If
present, it contains a timestamp of the moment when the resource was created (i.e., the
moment it had non-null state).

   <!ELEMENT creationdate (#PCDATA) >

13.2  displayname Property

Name: displayname

Namespace: DAV:

Purpose: Provides a name for the resource that is suitable for presentation to a user.

Description: The displayname property should be defined on all DAV compliant resources.
If present, the property contains a description of the resource that is suitable for
presentation to a user.

   <!ELEMENT displayname (#PCDATA) >

13.3  getcontentlanguage Property

Name: getcontentlanguage

Namespace: DAV:

Purpose: Contains the Content-Language header returned by a GET without accept headers

Description: The getcontentlanguage property MUST be defined on any DAV compliant resource
that returns the Content-Language header on a GET.

Value: language-tag ;language-tag is defined in section 14.13 of [RFC2068]

   <!ELEMENT getcontentlanguage (#PCDATA) >

13.4  getcontentlength Property

Name: getcontentlength

Namespace: DAV:

Purpose: Contains the Content-Length header returned by a GET without accept headers.
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Description: The getcontentlength property MUST be defined on any DAV compliant resource that
returns the Content-Length header in response to a GET.

Value: content-length ; see section 14.14 of [RFC2068]

   <!ELEMENT getcontentlength (#PCDATA) >

13.5  getcontenttype Property

Name: getcontenttype

Namespace: DAV:

Purpose: Contains the Content-Type header returned by a GET without accept headers.

Description: This getcontenttype property MUST be defined on any DAV compliant resource that
returns the Content-Type header in response to a GET.

Value: media-type ; defined in section 3.7 of [RFC2068]

   <!ELEMENT getcontenttype (#PCDATA) >

13.6  getetag Property

Name: getetag

Namespace: DAV:

Purpose: Contains the ETag header returned by a GET without accept headers.

Description: The getetag property MUST be defined on any DAV compliant resource that returns
the Etag header.

Value: entity-tag ; defined in section 3.11 of [RFC2068]

   <!ELEMENT getetag (#PCDATA) >

13.7  getlastmodified Property

Name: getlastmodified

Namespace: DAV:

Purpose: Contains the Last-Modified header returned by a GET method without accept headers.

Description: Note that the last-modified date on a resource may reflect changes in any part of the
state of the resource, not necessarily just a change to the response to the GET method.
For example, a change in a property may cause the last-modified date to change. The
getlastmodified property MUST be defined on any DAV compliant resource that
returns the Last-Modified header in response to a GET.

Value: HTTP-date ; defined in section 3.3.1 of [RFC2068]

   <!ELEMENT getlastmodified (#PCDATA) >

13.8  lockdiscovery Property

Name: lockdiscovery

Namespace: DAV:

Goland, et al. Standards Track [Page 59]



RFC 2518 WEBDAV February 1999

Purpose: Describes the active locks on a resource

Description: The lockdiscovery property returns a listing of who has a lock, what type of lock he
has, the timeout type and the time remaining on the timeout, and the associated lock
token. The server is free to withhold any or all of this information if the requesting
principal does not have sufficient access rights to see the requested data.

   <!ELEMENT lockdiscovery (activelock)* >

13.8.1  Example - Retrieving the lockdiscovery Property

>>Request

   PROPFIND /container/ HTTP/1.1
   Host: www.foo.bar
   Content-Length: xxxx
   Content-Type: text/xml; charset="utf-8"

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D='DAV:'>
     <D:prop><D:lockdiscovery/></D:prop>
   </D:propfind>

>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:multistatus xmlns:D='DAV:'>
     <D:response>
          <D:href>http://www.foo.bar/container/</D:href>
          <D:propstat>
               <D:prop>
                    <D:lockdiscovery>
                         <D:activelock>
                              <D:locktype><D:write/></D:locktype>
                              <D:lockscope><D:exclusive/></D:lockscope>
                              <D:depth>0</D:depth>
                              <D:owner>Jane Smith</D:owner>
                              <D:timeout>Infinite</D:timeout>
                              <D:locktoken>
                                   <D:href>
               opaquelocktoken:f81de2ad-7f3d-a1b2-4f3c-00a0c91a9d76
                                   </D:href>
                              </D:locktoken>
                         </D:activelock>
                    </D:lockdiscovery>
               </D:prop>
               <D:status>HTTP/1.1 200 OK</D:status>
          </D:propstat>
     </D:response>
   </D:multistatus>
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This resource has a single exclusive write lock on it, with an infinite timeout.

13.9  resourcetype Property

Name: resourcetype

Namespace: DAV:

Purpose: Specifies the nature of the resource.

Description: The resourcetype property MUST be defined on all DAV compliant resources. The
default value is empty.

   <!ELEMENT resourcetype ANY >

13.10  source Property

Name: source

Namespace: DAV:

Purpose: The destination of the source link identifies the resource that contains the unprocessed
source of the link's source.

Description: The source of the link (src) is typically the URI of the output resource on which the link
is defined, and there is typically only one destination (dst) of the link, which is the URI
where the unprocessed source of the resource may be accessed. When more than one
link destination exists, this specification asserts no policy on ordering.

   <!ELEMENT source (link)* >

13.10.1  Example - A source Property

   <?xml version="1.0" encoding="utf-8" ?>
   <D:prop xmlns:D="DAV:" xmlns:F="http://www.foocorp.com/Project/">
     <D:source>
          <D:link>
               <F:projfiles>Source</F:projfiles>
               <D:src>http://foo.bar/program</D:src>
               <D:dst>http://foo.bar/src/main.c</D:dst>
          </D:link>
          <D:link>
               <F:projfiles>Library</F:projfiles>
               <D:src>http://foo.bar/program</D:src>
               <D:dst>http://foo.bar/src/main.lib</D:dst>
          </D:link>
          <D:link>
               <F:projfiles>Makefile</F:projfiles>
               <D:src>http://foo.bar/program</D:src>
               <D:dst>http://foo.bar/src/makefile</D:dst>
          </D:link>
     </D:source>
   </D:prop>

In this example the resource http://foo.bar/program has a source property that contains three links. Each link
contains three elements, two of which, src and dst, are part of the DAV schema defined in this document, and
one which is defined by the schema http://www.foocorp.com/project/ (Source, Library, and Makefile). A client
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which only implements the elements in the DAV spec will not understand the foocorp elements and will ignore
them, thus seeing the expected source and destination links. An enhanced client may know about the foocorp
elements and be able to present the user with additional information about the links. This example demonstrates
the power of XML markup, allowing element values to be enhanced without breaking older clients.

13.11  supportedlock Property

Name: supportedlock

Namespace: DAV:

Purpose: To provide a listing of the lock capabilities supported by the resource.

Description: The supportedlock property of a resource returns a listing of the combinations of scope
and access types which may be specified in a lock request on the resource. Note that the
actual contents are themselves controlled by access controls so a server is not required
to provide information the client is not authorized to see.

   <!ELEMENT supportedlock (lockentry)* >

13.11.1  Example - Retrieving the supportedlock Property

>>Request

   PROPFIND  /container/ HTTP/1.1
   Host: www.foo.bar
   Content-Length: xxxx
   Content-Type: text/xml; charset="utf-8"

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:">
     <D:prop><D:supportedlock/></D:prop>
   </D:propfind>
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>>Response

   HTTP/1.1 207 Multi-Status
   Content-Type: text/xml; charset="utf-8"
   Content-Length: xxxx

   <?xml version="1.0" encoding="utf-8" ?>
   <D:multistatus xmlns:D="DAV:">
     <D:response>
          <D:href>http://www.foo.bar/container/</D:href>
          <D:propstat>
               <D:prop>
                    <D:supportedlock>
                         <D:lockentry>
                              <D:lockscope><D:exclusive/></D:lockscope>
                              <D:locktype><D:write/></D:locktype>
                         </D:lockentry>
                         <D:lockentry>
                              <D:lockscope><D:shared/></D:lockscope>
                              <D:locktype><D:write/></D:locktype>
                         </D:lockentry>
                    </D:supportedlock>
               </D:prop>
               <D:status>HTTP/1.1 200 OK</D:status>
          </D:propstat>
     </D:response>
   </D:multistatus>
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14.  Instructions for Processing XML in DAV

All DAV compliant resources MUST ignore any unknown XML element and all its children encountered while
processing a DAV method that uses XML as its command language.

This restriction also applies to the processing, by clients, of DAV property values where unknown XML
elements SHOULD be ignored unless the property's schema declares otherwise.

This restriction does not apply to setting dead DAV properties on the server where the server MUST record
unknown XML elements.

Additionally, this restriction does not apply to the use of XML where XML happens to be the content type of
the entity body, for example, when used as the body of a PUT.

Since XML can be transported as text/xml or application/xml, a DAV server MUST accept DAV method
requests with XML parameters transported as either text/xml or application/xml, and DAV client MUST accept
XML responses using either text/xml or application/xml.
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15.  DAV Compliance Classes

A DAV compliant resource can choose from two classes of compliance. A client can discover the compliance
classes of a resource by executing OPTIONS on the resource, and examining the "DAV" header which is
returned.

Since this document describes extensions to the HTTP/1.1 protocol, minimally all DAV compliant resources,
clients, and proxies MUST be compliant with [RFC2068].

Compliance classes are not necessarily sequential. A resource that is class 2 compliant must also be class 1
compliant; but if additional compliance classes are defined later, a resource that is class 1, 2, and 4 compliant
might not be class 3 compliant. Also note that identifiers other than numbers may be used as compliance class
identifiers.

15.1  Class 1

A class 1 compliant resource MUST meet all "MUST" requirements in all sections of this document.

Class 1 compliant resources MUST return, at minimum, the value "1" in the DAV header on all responses to
the OPTIONS method.

15.2  Class 2

A class 2 compliant resource MUST meet all class 1 requirements and support the LOCK method, the
supportedlock property, the lockdiscovery property, the Time-Out response header and the Lock-Token request
header. A class "2" compliant resource SHOULD also support the Time-Out request header and the owner
XML element.

Class 2 compliant resources MUST return, at minimum, the values "1" and "2" in the DAV header on all
responses to the OPTIONS method.
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16.  Internationalization Considerations

In the realm of internationalization, this specification complies with the IETF Character Set Policy [RFC2277].
In this specification, human-readable fields can be found either in the value of a property, or in an error
message returned in a response entity body. In both cases, the human-readable content is encoded using XML,
which has explicit provisions for character set tagging and encoding, and requires that XML processors read
XML elements encoded, at minimum, using the UTF-8 [UTF-8] encoding of the ISO 10646 multilingual plane.
XML examples in this specification demonstrate use of the charset parameter of the Content-Type header, as
defined in [RFC2376], as well as the XML "encoding" attribute, which together provide charset identification
information for MIME and XML processors.

XML also provides a language tagging capability for specifying the language of the contents of a particular
XML element. XML uses either IANA registered language tags (see [RFC1766]) or ISO 639 language tags
[ISO-639] in the "xml:lang" attribute of an XML element to identify the language of its content and attributes.

WebDAV applications MUST support the character set tagging, character set encoding, and the language
tagging functionality of the XML specification. Implementors of WebDAV applications are strongly
encouraged to read "XML Media Types" [RFC2376] for instruction on which MIME media type to use for
XML transport, and on use of the charset parameter of the Content-Type header.

Names used within this specification fall into three categories: names of protocol elements such as methods and
headers, names of XML elements, and names of properties. Naming of protocol elements follows the precedent
of HTTP, using English names encoded in USASCII for methods and headers. Since these protocol elements
are not visible to users, and are in fact simply long token identifiers, they do not need to support encoding in
multiple character sets. Similarly, though the names of XML elements used in this specification are English
names encoded in UTF-8, these names are not visible to the user, and hence do not need to support multiple
character set encodings.

The name of a property defined on a resource is a URI. Although some applications (e.g., a generic property
viewer) will display property URIs directly to their users, it is expected that the typical application will use
a fixed set of properties, and will provide a mapping from the property name URI to a human-readable field
when displaying the property name to a user. It is only in the case where the set of properties is not known
ahead of time that an application need display a property name URI to a user. We recommend that applications
provide human-readable property names wherever feasible.

For error reporting, we follow the convention of HTTP/1.1 status codes, including with each status code a
short, English description of the code (e.g., 423 (Locked)). While the possibility exists that a poorly crafted
user agent would display this message to a user, internationalized applications will ignore this message, and
display an appropriate message in the user's language and character set.

Since interoperation of clients and servers does not require locale information, this specification does not
specify any mechanism for transmission of this information.
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17.  Security Considerations

This section is provided to detail issues concerning security implications of which WebDAV applications need
to be aware.

All of the security considerations of HTTP/1.1 (discussed in [RFC2068]) and XML (discussed in [RFC2376])
also apply to WebDAV. In addition, the security risks inherent in remote authoring require stronger
authentication technology, introduce several new privacy concerns, and may increase the hazards from poor
server design. These issues are detailed below.

17.1  Authentication of Clients

Due to their emphasis on authoring, WebDAV servers need to use authentication technology to protect not just
access to a network resource, but the integrity of the resource as well. Furthermore, the introduction of locking
functionality requires support for authentication.

A password sent in the clear over an insecure channel is an inadequate means for protecting the accessibility
and integrity of a resource as the password may be intercepted. Since Basic authentication for HTTP/1.1
performs essentially clear text transmission of a password, Basic authentication MUST NOT be used to
authenticate a WebDAV client to a server unless the connection is secure. Furthermore, a WebDAV server
MUST NOT send Basic authentication credentials in a WWW-Authenticate header unless the connection is
secure. Examples of secure connections include a Transport Layer Security (TLS) connection employing a
strong cipher suite with mutual authentication of client and server, or a connection over a network which is
physically secure, for example, an isolated network in a building with restricted access.

WebDAV applications MUST support the Digest authentication scheme [RFC2069]. Since Digest
authentication verifies that both parties to a communication know a shared secret, a password, without
having to send that secret in the clear, Digest authentication avoids the security problems inherent in Basic
authentication while providing a level of authentication which is useful in a wide range of scenarios.

17.2  Denial of Service

Denial of service attacks are of special concern to WebDAV servers. WebDAV plus HTTP enables denial of
service attacks on every part of a system's resources.

The underlying storage can be attacked by PUTting extremely large files.

Asking for recursive operations on large collections can attack processing time.

Making multiple pipelined requests on multiple connections can attack network connections.

WebDAV servers need to be aware of the possibility of a denial of service attack at all levels.

17.3  Security through Obscurity

WebDAV provides, through the PROPFIND method, a mechanism for listing the member resources of a
collection. This greatly diminishes the effectiveness of security or privacy techniques that rely only on the
difficulty of discovering the names of network resources. Users of WebDAV servers are encouraged to use
access control techniques to prevent unwanted access to resources, rather than depending on the relative
obscurity of their resource names.

17.4  Privacy Issues Connected to Locks

When submitting a lock request a user agent may also submit an owner XML field giving contact information
for the person taking out the lock (for those cases where a person, rather than a robot, is taking out the
lock). This contact information is stored in a lockdiscovery property on the resource, and can be used by
other collaborators to begin negotiation over access to the resource. However, in many cases this contact
information can be very private, and should not be widely disseminated. Servers SHOULD limit read access
to the lockdiscovery property as appropriate. Furthermore, user agents SHOULD provide control over whether
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contact information is sent at all, and if contact information is sent, control over exactly what information is
sent.

17.5  Privacy Issues Connected to Properties

Since property values are typically used to hold information such as the author of a document, there is the
possibility that privacy concerns could arise stemming from widespread access to a resource's property data. To
reduce the risk of inadvertent release of private information via properties, servers are encouraged to develop
access control mechanisms that separate read access to the resource body and read access to the resource's
properties. This allows a user to control the dissemination of their property data without overly restricting
access to the resource's contents.

17.6  Reduction of Security due to Source Link

HTTP/1.1 warns against providing read access to script code because it may contain sensitive information.
Yet WebDAV, via its source link facility, can potentially provide a URI for script resources so they may be
authored. For HTTP/1.1, a server could reasonably prevent access to source resources due to the predominance
of read-only access. WebDAV, with its emphasis on authoring, encourages read and write access to source
resources, and provides the source link facility to identify the source. This reduces the security benefits of
eliminating access to source resources. Users and administrators of WebDAV servers should be very cautious
when allowing remote authoring of scripts, limiting read and write access to the source resources to authorized
principals.

17.7  Implications of XML External Entities

XML supports a facility known as "external entities", defined in section 4.2.2 of [REC-XML], which instruct
an XML processor to retrieve and perform an inline include of XML located at a particular URI. An external
XML entity can be used to append or modify the document type declaration (DTD) associated with an XML
document. An external XML entity can also be used to include XML within the content of an XML document.
For non-validating XML, such as the XML used in this specification, including an external XML entity is
not required by [REC-XML]. However, [REC-XML] does state that an XML processor may, at its discretion,
include the external XML entity.

External XML entities have no inherent trustworthiness and are subject to all the attacks that are endemic to
any HTTP GET request. Furthermore, it is possible for an external XML entity to modify the DTD, and hence
affect the final form of an XML document, in the worst case significantly modifying its semantics, or exposing
the XML processor to the security risks discussed in [RFC2376]. Therefore, implementers must be aware that
external XML entities should be treated as untrustworthy.

There is also the scalability risk that would accompany a widely deployed application which made use of
external XML entities. In this situation, it is possible that there would be significant numbers of requests for
one external XML entity, potentially overloading any server which fields requests for the resource containing
the external XML entity.

17.8  Risks Connected with Lock Tokens

This specification, in Section 6.4, requires the use of Universal Unique Identifiers (UUIDs) for lock tokens, in
order to guarantee their uniqueness across space and time. UUIDs, as defined in [ISO-11578], contain a "node"
field which "consists of the IEEE address, usually the host address. For systems with multiple IEEE 802 nodes,
any available node address can be used." Since a WebDAV server will issue many locks over its lifetime, the
implication is that it will also be publicly exposing its IEEE 802 address.

There are several risks associated with exposure of IEEE 802 addresses. Using the IEEE 802 address:

• It is possible to track the movement of hardware from subnet to subnet.

• It may be possible to identify the manufacturer of the hardware running a WebDAV server.

• It may be possible to determine the number of each type of computer running WebDAV.
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Section 6.4.1 of this specification details an alternate mechanism for generating the "node" field of a UUID
without using an IEEE 802 address, which alleviates the risks associated with exposure of IEEE 802 addresses
by using an alternate source of uniqueness.

Goland, et al. Standards Track [Page 69]



RFC 2518 WEBDAV February 1999

18.  IANA Considerations

This document defines two namespaces, the namespace of property names, and the namespace of WebDAV-
specific XML elements used within property values. URIs are used for both names, for several reasons.
Assignment of a URI does not require a request to a central naming authority, and hence allow WebDAV
property names and XML elements to be quickly defined by any WebDAV user or application. URIs also
provide a unique address space, ensuring that the distributed users of WebDAV will not have collisions among
the property names and XML elements they create.

This specification defines a distinguished set of property names and XML elements that are understood by all
WebDAV applications. The property names and XML elements in this specification are all derived from the
base URI DAV: by adding a suffix to this URI, for example, DAV:creationdate for the "creationdate" property.

This specification also defines a URI scheme for the encoding of lock tokens, the opaquelocktoken URI scheme
described in Section 6.4.

To ensure correct interoperation based on this specification, IANA must reserve the URI namespaces starting
with "DAV:" and with "opaquelocktoken:" for use by this specification, its revisions, and related WebDAV
specifications.
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19.  Intellectual Property

The following notice is copied from RFC 2026 [RFC2026], section 10.4, and describes the position of the IETF
concerning intellectual property claims made against this document.

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use other technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in
standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt made
to obtain a general license or permission for the use of such proprietary rights by implementors or users of this
specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this standard. Please
address the information to the IETF Executive Director.
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23.  Appendices

23.1  Appendix 1 - WebDAV Document Type Definition

This section provides a document type definition, following the rules in [REC-XML], for the XML elements
used in the protocol stream and in the values of properties. It collects the element definitions given in sections
12 and 13.

Goland, et al. Standards Track [Page 76]



RFC 2518 WEBDAV February 1999

   <!DOCTYPE webdav-1.0 [

   <!--============ XML Elements from Section 12 ==================-->

   <!ELEMENT activelock (lockscope, locktype, depth, owner?, timeout?,
   locktoken?) >

   <!ELEMENT lockentry (lockscope, locktype) >
   <!ELEMENT lockinfo (lockscope, locktype, owner?) >

   <!ELEMENT locktype (write) >
   <!ELEMENT write EMPTY >

   <!ELEMENT lockscope (exclusive | shared) >
   <!ELEMENT exclusive EMPTY >
   <!ELEMENT shared EMPTY >

   <!ELEMENT depth (#PCDATA) >

   <!ELEMENT owner ANY >

   <!ELEMENT timeout (#PCDATA) >

   <!ELEMENT locktoken (href+) >

   <!ELEMENT href (#PCDATA) >

   <!ELEMENT link (src+, dst+) >
   <!ELEMENT dst (#PCDATA) >
   <!ELEMENT src (#PCDATA) >

   <!ELEMENT multistatus (response+, responsedescription?) >

   <!ELEMENT response (href, ((href*, status)|(propstat+)),
   responsedescription?) >
   <!ELEMENT status (#PCDATA) >
   <!ELEMENT propstat (prop, status, responsedescription?) >
   <!ELEMENT responsedescription (#PCDATA) >

   <!ELEMENT prop ANY >
   
   <!ELEMENT propertybehavior (omit | keepalive) >
   <!ELEMENT omit EMPTY >

   <!ELEMENT keepalive (#PCDATA | href+) >

   <!ELEMENT propertyupdate (remove | set)+ >
   <!ELEMENT remove (prop) >
   <!ELEMENT set (prop) >

   <!ELEMENT propfind (allprop | propname | prop) >
   <!ELEMENT allprop EMPTY >
   <!ELEMENT propname EMPTY >

   <!ELEMENT collection EMPTY >

   <!--=========== Property Elements from Section 13 ===============-->
   <!ELEMENT creationdate (#PCDATA) >
   <!ELEMENT displayname (#PCDATA) >
   <!ELEMENT getcontentlanguage (#PCDATA) >
   <!ELEMENT getcontentlength (#PCDATA) >
   <!ELEMENT getcontenttype (#PCDATA) >
   <!ELEMENT getetag (#PCDATA) >
   <!ELEMENT getlastmodified (#PCDATA) >
   <!ELEMENT lockdiscovery (activelock)* >
   <!ELEMENT resourcetype ANY >
   <!ELEMENT source (link)* >
   <!ELEMENT supportedlock (lockentry)* >
   ]>
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23.2  Appendix 2 - ISO 8601 Date and Time Profile

The creationdate property specifies the use of the ISO 8601 date format [ISO-8601]. This section defines a
profile of the ISO 8601 date format for use with this specification. This profile is quoted from an Internet-Draft
by Chris Newman, and is mentioned here to properly attribute his work.

   date-time       = full-date "T" full-time

   full-date       = date-fullyear "-" date-month "-" date-mday
   full-time       = partial-time time-offset

   date-fullyear   = 4DIGIT
   date-month      = 2DIGIT  ; 01-12
   date-mday       = 2DIGIT  ; 01-28, 01-29, 01-30, 01-31 based on
   month/year
   time-hour       = 2DIGIT  ; 00-23
   time-minute     = 2DIGIT  ; 00-59
   time-second     = 2DIGIT  ; 00-59, 00-60 based on leap second rules
   time-secfrac    = "." 1*DIGIT
   time-numoffset  = ("+" / "-") time-hour ":" time-minute
   time-offset     = "Z" / time-numoffset

   partial-time    = time-hour ":" time-minute ":" time-second
                    [time-secfrac]

Numeric offsets are calculated as local time minus UTC (Coordinated Universal Time). So the equivalent time
in UTC can be determined by subtracting the offset from the local time. For example, 18:50:00-04:00 is the
same time as 22:58:00Z.

If the time in UTC is known, but the offset to local time is unknown, this can be represented with an offset
of "-00:00". This differs from an offset of "Z" which implies that UTC is the preferred reference point for the
specified time.

23.3  Appendix 3 - Notes on Processing XML Elements

23.3.1  Notes on Empty XML Elements

XML supports two mechanisms for indicating that an XML element does not have any content. The first is to
declare an XML element of the form <A></A>. The second is to declare an XML element of the form <A/>.
The two XML elements are semantically identical.

It is a violation of the XML specification to use the <A></A> form if the associated DTD declares the element
to be EMPTY (e.g., <!ELEMENT A EMPTY>). If such a statement is included, then the empty element
format, <A/> must be used. If the element is not declared to be EMPTY, then either form <A></A> or <A/>
may be used for empty elements.

23.3.2  Notes on Illegal XML Processing

XML is a flexible data format that makes it easy to submit data that appears legal but in fact is not. The
philosophy of "Be flexible in what you accept and strict in what you send" still applies, but it must not be
applied inappropriately. XML is extremely flexible in dealing with issues of white space, element ordering,
inserting new elements, etc. This flexibility does not require extension, especially not in the area of the
meaning of elements.

There is no kindness in accepting illegal combinations of XML elements. At best it will cause an unwanted
result and at worst it can cause real damage.
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23.3.2.1  Example - XML Syntax Error

The following request body for a PROPFIND method is illegal.

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:">
     <D:allprop/>
     <D:propname/>
   </D:propfind>

The definition of the propfind element only allows for the allprop or the propname element, not both. Thus the
above is an error and must be responded to with a 400 (Bad Request).

Imagine, however, that a server wanted to be "kind" and decided to pick the allprop element as the true element
and respond to it. A client running over a bandwidth limited line who intended to execute a propname would be
in for a big surprise if the server treated the command as an allprop.

Additionally, if a server were lenient and decided to reply to this request, the results would vary randomly
from server to server, with some servers executing the allprop directive, and others executing the propname
directive. This reduces interoperability rather than increasing it.

23.3.2.2  Example - Unknown XML Element

The previous example was illegal because it contained two elements that were explicitly banned from
appearing together in the propfind element. However, XML is an extensible language, so one can imagine new
elements being defined for use with propfind. Below is the request body of a PROPFIND and, like the previous
example, must be rejected with a 400 (Bad Request) by a server that does not understand the expired-props
element.

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:"
   xmlns:E="http://www.foo.bar/standards/props/">
     <E:expired-props/>
   </D:propfind>

To understand why a 400 (Bad Request) is returned let us look at the request body as the server unfamiliar with
expired-props sees it.

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:"
               xmlns:E="http://www.foo.bar/standards/props/">
   </D:propfind>

As the server does not understand the expired-props element, according to the WebDAV-specific XML
processing rules specified in Section 14, it must ignore it. Thus the server sees an empty propfind, which by the
definition of the propfind element is illegal.

Please note that had the extension been additive it would not necessarily have resulted in a 400 (Bad Request).
For example, imagine the following request body for a PROPFIND:

   <?xml version="1.0" encoding="utf-8" ?>
   <D:propfind xmlns:D="DAV:"
               xmlns:E="http://www.foo.bar/standards/props/">
     <D:propname/>
     <E:leave-out>*boss*</E:leave-out>
   </D:propfind>
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The previous example contains the fictitious element leave-out. Its purpose is to prevent the return of any
property whose name matches the submitted pattern. If the previous example were submitted to a server
unfamiliar with leave-out, the only result would be that the leave-out element would be ignored and a
propname would be executed.

23.4  Appendix 4 -- XML Namespaces for WebDAV

23.4.1  Introduction

All DAV compliant systems MUST support the XML namespace extensions as specified in [REC-XML-
NAMES].

23.4.2  Meaning of Qualified Names

[Note to the reader: This section does not appear in [REC-XML-NAMES], but is necessary to avoid ambiguity
for WebDAV XML processors.]

WebDAV compliant XML processors MUST interpret a qualified name as a URI constructed by appending the
LocalPart to the namespace name URI.

Example

   <del:glider xmlns:del="http://www.del.jensen.org/">
     <del:glidername>
          Johnny Updraft
     </del:glidername>
     <del:glideraccidents/>
   </del:glider>

In this example, the qualified element name "del:glider" is interpreted as the URL "http://www.del.jensen.org/
glider".

   <bar:glider xmlns:del="http://www.del.jensen.org/">
     <bar:glidername>
          Johnny Updraft
     </bar:glidername>
     <bar:glideraccidents/>
   </bar:glider>

Even though this example is syntactically different from the previous example, it is semantically identical.
Each instance of the namespace name "bar" is replaced with "http://www.del.jensen.org/" and then appended
to the local name for each element tag. The resulting tag names in this example are exactly the same as for the
previous example.

   <foo:r xmlns:foo="http://www.del.jensen.org/glide">
     <foo:rname>
          Johnny Updraft
     </foo:rname>
     <foo:raccidents/>
   </foo:r>

This example is semantically identical to the two previous ones. Each instance of the namespace name "foo" is
replaced with "http://www.del.jensen.org/glide" which is then appended to the local name for each element tag,
the resulting tag names are identical to those in the previous examples.
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