HONG KONG, MAY 1-5 2007

DeltaV:
Adding Versioning to the Web

Jim Whitehead

University of California, Santa Cruz
ejw@soe.ucsc.eau

1

Documents Change

= Documents change over time
= Web pages
Word processing documents
Spreadsheets
Images

...all are typically created via an iterative authoring
process

= Document change tracking is desirable
= Undo a mistake
= Know who made a change, and when
= Record why a change was made

= Change tracking provides
= Greater control over change
= An archive of past document states

Remote Collaborative Document
Authoring Scenarios

= A task force of people from geographically dispersed
business units need to develop a report together.

= Team needs to solicit feedback, so they send out copies of
the report.

= As a result, the team needs a permanent copy of the exact
report version they are having other people review.

BOSTON LONDON

Rebecca

Johnathan
Word
2000
DAV/DeltaV
DAV/DeltaV
DAV/Delta DAV/DeltaV

e ¥\ server

auto-versioning ...’

enabled
shared document

Other Remote Collaboration
Scenarios

= Cross-company collaboration project
= Multiple companies, several countries.
= Remote authoring of project Web site
= Using a WebDAV-aware tool, such as Go Live, or Dreamweaver.

= Since any project member can edit the Web site contents,
the team wants to keep track of all changes
= Records who changed which page
= If mistakes are made, changes can be undone

= Open source software project
= Team members from around the globe
= Need to record code changes
= Maintain stable baselines of public releases

= Developers need to edit and compile source code on their
local machine

WebDAV/DeltaV: In Support of
Collaboration

= To support the collaboration scenarios, there is a
need for a standard that supports:
= Remote authoring of all types of documents

= Web pages, word processing, spreadsheets, presentations...
Change tracking for these documents

Prevents collaborators from clobbering each other’s work
Simultaneous work, in isolation from each other’s changes
Recording stable baselines comprised of multiple documents
Recording information about documents (metadata)

= Which also...

= Is supported by major tools
= Is integrated into the Web
= Js easy to use

= WebDAV and DeltaV do all this and more!

What is DeltaV?

= DeltaV is:

= An application layer network protocol
= Extends the WebDAV protocol

= WebDAV itself extends HTTP 1.1
= Thus DeltaV is also an extension to HTTP 1.1
= HTTP is the core network protocol of the Web

= An interoperability standard

= Allows document authoring and software development
applications to interoperate with versioning and configuration
management systems using a common interface

= A data model

= DeltaV embodies a data model that is capable of modeling
multiple versioning and configuration management repositories

= The data model is independent of network protocol

= A data integration infrastructure
= A common place for cross-application data sharing

Who is DeltaV?

= DeltaV is an IETF Working Group

= IETF: Internet Engineering Task Force
= Developed standards such as TCP, IP, SMTP, POP, FTP
= Typical IETF & W3C spheres of standardization:

= IETF: network protocol and identifier standards (HTTP, URL)
= W3C: content standards (HTML, CSS, XML, XSS, RDF)

= JETF considers its working groups to consist of
individual contributors, not corporate representatives
= Anyone may join an IETF working group
= Agreement is by rough consensus: no voting
= Still, corporate affiliations can be informative:
= Chair: Jim Amsden, IBM

= Document authors include Geoff Clemm, Rational, Chris
Kaler, Microsoft

= QOther participants: Merant, Intersolv, OTI

Hypertext Transfer Protocol (HTTP)

Briefly, HTTP

= HyperText Transfer Protocol (RFC 2616)

= A remote procedure call protocol
= Client sends a request to the server
= Server processes request, and returns result

Client
|

® Marshal request

v

@ Transmit request —— —+t» ® Unmarshal request

@ Perform request

® Marshal response

@ Unmarshal response < “T— ® Transmit response

\

HT TP Request Format

= A request line:
= {method} {Request-URI} {protocol version}
= Example:
= GET /users/ejw/flyer.doc HTTP/1.1
= A series of headers:
= {header}: {value}
= RFC 822 (email) style header encoding
= Example:
= Content-Type: text/html
= An optional request body
= Separated from headers by a <CR><LF>
= A sequence of 8-bit bytes (octets)

HT TP Response Format

= Very similar to the request format:

= A status line:
= {protocol version} {status code} {status phrase}

= Status codes:

= 1xx: Informational

= 2xX: Successful

= 3xX: Redirection

= 4xx: Client error

= 5xx: Server error
= Example:

= HTTP/1.1 200 OK

= A series of headers
= Same formatting as in request

= A response body
= Same formatting as in request

Sample HTTP interaction

GET / HTTP/1.1
Request { Host: www.webdav.org
Content-Length: 0
[HTTP/1.1 200 OK
Date: Wed, 25 Apr 2001 22:58:22 GMT
Server: Apache
Last-Modified: Thu, 19 Apr 2001 05:30:49 GMT
ETag: "30e7da-2f9d-3ade7809"
Accept-Ranges: bytes
Response < Content-Length: 12189
Content-Type: text/html

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<htm/>
<head>
<title>WebDAV Resources</title>

Important HTTP 1.1 Concepts

Requests are transmitted over a reliable transport
= Invariably, this is TCP/IP

Network connection is left open at the end of a
request
= Uses the network more efficiently

Stateless protocol: all information needed to
process a request is contained in the request

Entity tag is a unique identifier for the state of a
resource
= If the GET response body changes, so does the Etag

= Useful for determining if the resource has changed
= Should a cache update its value?
= Did someone modified this resource while I was editing it?

HTTP Methods

= QOperations supported by HTTP include:
= GET —read a resource

= HEAD - just return headers about a resource
= Useful for caching (quickly retrieve entity tag)

OPTIONS - lists supported methods
POST — protocol-tunneling method
PUT — write a resource

DELETE — remove a resource

= Although HTTP 1.1 supports PUT and DELETE, it is
primarily a read-only protocol
= PUT and DELETE are not widely supported by clients

Web Distributed Authoring and
Versioning (WebDAV)

WebDAV

The goal of WebDAV is to add capabilities for remote
authoring and versioning to HTTP

= But, the versioning part was dropped in order to finish the
remote authoring protocol

= RFC 2518 is the defining document for WebDAV
= DeltaV picked up where WebDAYV left off
= The changes (A) needed to add the “V” back into WebDAV

WebDAV capabilities include:

= Overwrite prevention: lock, unlock

= Properties: list, add, remove

= Namespace Operations: move, copy

= Collections: mkcol, hierarchy operations

Collaboration Infrastructure

= Whole resource locking supports:
Remote collaborative authoring of HTML pages and associated
Images
Remote collaborative authoring of any media type (word
processing, presentations, etc.)

Locks time out, easing administration of locks

= nfrastructure for development of asynchronous, widely
distributed, hypertext-aware, collaborative editing tools.

Metadata Recording Infrastructure

= Metadata support

= Properties. (name, value) pairs can be created, modified,
deleted, and read on Web resources.

= Consistency of properties can be maintained by the server or
the client

= Property values are well-formed Extensible Markup
Language (XML)
» nfrastructure for how to record information about
Web data

Namespace Management
Infrastructure

= Remote name space management:

= Copy and Move individual resources, and hierarchies of
resource
= Create and modify (ordered) collections of resources

= Add/remove members by-reference

= nfrastructure for remotely organizing and viewing
collections of Web resources

WebDAV Methods

= Qverwrite Prevention:

= LOCK - prevents non-lock holders from writing to the
resource

= UNLOCK - removes a lock

= Metadata Management:

= PROPFIND - read properties from a resource
= Allprop — all property names and values
= Propname — only return property names
= Prop — just return specified properties

= PROPPATCH — write properties on a resource
= Namespace Management
= COPY - duplicate a resource

= MOVE — move a resource (preserving identity)
= MKCOL - create a new collection

WebDAV Object Model

Web Resource

Properties
(name, value)
pairs

Body
(primary
state)

Scope of WebDAV Methods

LOCK
UNLOCK
COPY
MOVE?
DELETE'
MKCOL*
(PUT")

Web Resource

Properties
(name, value)
pairs

> PROPFIND

<?:m PROPPATCH?

Body
(primary
state)

mz:i> GET
{—m pUT*

T - affected by
LOCK

Major WebDAV Servers

Microsoft: IIS 5, Exchange 2000, Sharepoint
Apache: mod_dav (over 10,000 sites)
Oracle: Internet File System

Adobe: InScope

Xythos: Storage Server

Novell: Netware 5.1, Net Publisher

W3C: Jigsaw

Endeavors: Magi-DAV

IBM: DAV4] (DeveloperWorks)
DataChannel: DataChannel Server (DCS 4.1)
Intraspect: Knowledge Server

OpenLink: Virtuoso

Hyperwave: Information Server 5.5

Major WebDAYV Clients

Application Software:
= Microsoft: Office 2000 (Word, Excel, PowerPoint, Publisher)
= Adobe: Photoshop 6, Acrobat 5
Web Site Authoring
= Adobe: Go Live 5
= Macromedia: Dreamweaver 4

Remote File Access:

= Apple: Mac OS X webdavfs

= OS X also ships with Apache and mod_dav (have to configure mod_dav
to make it work)

Microsoft: Windows Web Folders

Wind River Software: WebDrive
Goliath (Mac, open source)
Nautilus (GNOME project, Eazel)
= WebDAV Explorer (UC Irvine, Feise/Kanomata, open source)
XML editors

= Excosoft: Documentor
= Altova: XML Spy 3.5

Versioning Terminology

and Data Model

Version History

URL path of
Versioned
Controlled
Resource

» Foo.htm

' Line of

' Descent
Branch .
Version _ Revision

Name History
Label

/ a : Merge
Successor Beta2 \ -

Predecessor

Placing a resource under version
control

= VERSION-CONTROL puts an unversioned resource
under version control

= VERSION-CONTROL does three operations:

1. Creates a new version history resource
= A list of URLs of the versions in this revision history

= The URL of the root version
2. Creates a new version resource

= Predecessor and successor identifiers stored in properties
(initially empty)

= URL is not the same as the original unversioned resource
3. Converts the unversioned resource into a version
controlled resource
= URL is the same as the original unversioned resource
= Has a pointer to the version history resource
= Records whether it is checked-out or checked-in

Representation of a Version History

Abstract version Representation of foo.html in DeltaV
history of foo.html

version history resource version-controlled resource

DAV:version-set DAV:checked-ou
- /his/73/ver/1 - /his/73/ver/3

= /his/73/ver/2 —
> /his/73/ver/3 — DAV:version-history

- [his/73/vhr

DAV:root-version
- /his/73/ver/1

N

/his/73/vhr

/his/73/ver/1 /his/73/ver/2 |his/73/ver/3

— 7
~

version resources

Uniqgue Aspects of Versioning Data
Model

= DeltaV data model is different from RCS/SCCS model

= RCS: placing foo.html under version control causes:
= foo.html to be made read-only

= Creation of RCS/foo.html,v archive file
= Archive contains version history and version data

= Differences

= Both use the original name as the place where commands are
directed

= But, version-controlled resource has more metadata
= DeltaV separates version history from version storage

= DeltaV gives each version a unique identifier (URL)

= Note that delta storage can still be used in the underlying
repository

Rationale for Versioning Data Model

= Each version is given its own URL, thus allowing
hypertext linking to a specific version.
= Hence, each version must be a separate resource

= Workspaces are the motivation for separating the
version-controlled resource from the history resource.

= A workspace allows a collaborator to work in isolation, in
their own part of the namespace.
= For example, Greg and Lisa might have workspaces:
= /ws/users/greg/ and /ws/users/lisa/

= If both want foo.html to appear in their local workspace,
each needs a version controlled resource.

= Thus, one version history can be associated with multiple
version controlled resources.

Versioning Operations

CHECKOUT

= DeltaV uses the library metaphor for versioning.

= To work on a resource, you:
= Check out
= Make edits
= Check in

= CHECKOUT is applied to a version controlled resource

= Allows modifications to the body and dead properties of the
version controlled resource

= If a version is already checked-out, or has a successor (is
non-tip), a fork (branch) is possible.

= DAV:checkout-fork property on a version affects branch
formation

= ok: branching is permitted
= discouraged: the client must explicitly indicate branching is OK
= forbidden: branching is not allowed (linear version history)

CHECKIN / UNCHECKIN

= CHECKIN freezes the state of a version controlled

resource.

= Creates a new version resource
= Body and dead properties are the same as those of the version
controlled resource

= Freezes the body and dead properties of the version
controlled resource (making them read-only)

= A comment describing the purpose of a change can be
written into the DAV:comment property (before CHECKIN)

= Fork control options are available on CHECKIN as well

= UNCHECKOUT aborts the editing sequence

= Cancels the CHECKOUT
= Restores the pre-CHECKOUT state of the version controlled
resource

Autoversioning

= There are many WebDAV-aware applications
= They know nothing about versioning!
= Would like to provide automatic versioning support

= Two styles of autoversioning:

1. Every modification creates a new version

= PUT/PROPPATCH @ CHECKOUT - PUT/PROPPATCH -
CHECKIN

= Works best for authoring clients that replicate resources to a

local disk, and only write to the server at the end of an editing
session.

2. Every LOCK/UNLOCK pair creates a new version
= LOCK 2 LOCK - CHECKOUT
= UNLOCK 2 CHECKIN - UNLOCK

= Works well for authoring clients that work directly on the
WebDAV server and take out locks, like Office 2000.

= Style is controlled by DAV:autocheckout and
DAV:autocheckin properties on version controlled resource

Labels

Human-readable strings that can be attached to a
particular version
Guaranteed uniqueness within a version history

Can be reused across version histories

= For example, “release_beta” could be used to identify
different versions in multiple version histories

= Can be used as a simple way to record configurations

= Drawback: the mapping of labels to versions can change over
time, so configurations are not guaranteed to be stable

LABEL method is used to set/move/remove a label on

a version

Label: header can be used with GET/PROPFIND on a
version controlled resource to retrieve information
from the named version.

UPDATE

= Body and dead properties of a version controlled
resource are typically the same as the last checked-in
version

= In a linear version history, the version controlled resource
typically tracks the tip version

= UPDATE
= Modifies the content and dead properties...
= .. of a checked-in version-controlled resource
= .. to be those of a specified version from the version history

= Benefit: An arbitrary version can be reflected by
the version controlled resource.

Merging

Branches in a version history are used for two
purposes:

= Representing simultaneous development by multiple
collaborators (parallel development)

= Representing variants of a resource
= Natural language, computing platform, etc.

It is useful to merge together branches that represent
parallel development

= Combine the efforts of multiple people into a consistent

whole

MERGE combines two versions

= Minimally combines the two branches in the version history

= Performs a best-effort content merge if the server
understands the content type of the two versions

= text/* merging will likely be the only types uniformly supported

Version Tree Report

= A graphical visualization of a version history aids
understanding

= Information needed to create this view:
= List of versions
= Version names
= Predecessor/successor relationships

= In DeltaV data model, information is distributed:
= Version history resource: list of versions
= Version resources: version names, pred/succ relationships
= Using PROPFIND, would require N+1 network requests in the
worst case (N=# of versions)
= REPORT method supports many kinds of reports

= Version tree report allows arbitrary properties to be
requested from all versions of a version history

= DAV:version-name & DAV:successor-set properties
= Now, only one network request is needed

Activities

Purpose and Definition

= Frequently, a logical change spans multiple versions
in multiple version histories
= For example, fixing a specific software bug can involve the
creation of multiple versions of several files
= Activities associate a logical change with the set of
versions created while making that change.

= Versions from a given version history are limited to a
single line of descent

= Activities are not versioned

= Sometimes want to ensure that all work done by team
members is on a single line of descent
= Avoids merging between team members

= Activities can be used to enforce working on just a single line
of descent

Working with Activities

= MKACTIVITY creates a new activity resource

= Upon checkout, the author specifies an activity

= This activity is associated with the new version created at
checkin
= Specifically:
= URL of the checked-out resource is stored in activity’s
DAV:activity-checkout-set property

= On checkin, the new version’s URL is recorded in activity’s
DAV:activity-version-set property...

= ... and the checked-out resource is removed from DAV:activity-
checkout-set

= Using activities, it is possible to select a particular
logical change for merging into another workspace

= The activity is used in a MERGE request

= |atest version in an activity (for each version history) is the one
used in the merge

Latest Activity Version Report

= Since an activity only records a set of version URLS,
determining the latest version in an activity would
require:
Retrieving the list of versions in an activity
Determining the associated set of version histories
Retrieving the version tree report for each version history
Evaluating the version graphs to determine which of the
activity versions is the latest
= The latest activity version report returns the latest
version in an activity, for one version history
= REPORT is invoked on a version history resource
= Passes URL of an activity resource

Workspaces

Purpose and Definition

= A workspace is a location...
= .. where a person can work in isolation

= ... from ongoing changes made by other collaborators
= to the same set of resources.

= Workspace use scenarios:

= Two people each modify a common source code file, and
want to test their work before integrating changes
= The directory structure of a large project is being changed

= Don't want to require everyone to stop working while this
takes place

= Keep namespace changes invisible to team until complete

= A developer is trying a change that might not pan out

= New files are in their workspace, but not under version control
until the final viability of the change is known

Workspaces

= Two kinds of workspaces: server and client

= Main difference is whether the server maintains a portion of
its namespace for each workspace

= Workspaces can hold versioned and unversioned data

Server workspaces

Maintains a separate namespace for each workspace

For example: Lisa and Chuck both have workspaces
= Lisa’s: /users/people/lisa/projectX/...
= Lisa does all her work in this tree
= Chuck’s: /users/people/chuck/projectX/...
= Chuck does all his work in this tree
Local replication of versions may still occur

Advantages

= Permit access from multiple locations and machines

= Permit namespace operations (like MOVE) to be isolated
Disadvantages

= Requires significant manipulation of the server namespace
= Might be tricky to implement for filesystem-based repositories

Client workspaces

No server namespace is maintained
Working files are replicated to local machines

Server reserves a working resource for each

checkout
= When the edit session is done, data is written to the working
resource

Advantages
= Less use of server namespace
= Close match to CVS replicate-work-synchronize work pattern

Disadvantages

= Cannot access workspace from multiple machines and
locations

= Namespace operations are immediately visible

Server Workspace Mechanics

= MKWORKSPACE creates a new workspace resource
= This is the top-level directory of the project
= E.g., /users/people/lisa/projectX/
= VERSION-CONTROL adds version controlled resources

to a workspace

= Creates a new version controlled resource for a version
history

= The version history will have multiple version controlled
resources

= Think of the version controlled resource as the access point,
at some location in the namespace, for operations on a
version history.

Synchronizing Workspaces

= At some point in time, a person working in a
workspace will need to bring in changes made by
other collaborators.

= MERGE combines two workspaces

= Typically, the source of the merge is the common project
workspace, and the destination is a personal workspace

= MERGE acts to select the most recent checked-in version for
each version-controlled resource in the workspace
= A client may want to present the outcome of a
workspace merge before it is actually performed
= Allows the user to decide if they like the outcome

= The merge-preview report describes the changes that
would occur due to a MERGE operation

= Invoke it using REPORT

Server Workspace Example

= Consider a program with the following source files:
= /project X nmakefile
= /projectX/ nmain.c
= /projectX/ defs.h

= Geoff and Chris want to collaborate together on this
project
= Each person works in a separate server-side workspace

= Create the workspaces:
= MKWORKSPACE / user s/ geof f/ proj ect X/
= MKWORKSPACE / user s/ chri s/ proj ect X/

Server Workspace Example (2)

= Use version control to add project files:

= Populate Geoff’s workspace:
= VERSION-CONTROL / user s/ geof f/ proj ect X/ makefil e
from / proj ect X/ makefil e

= VERSION-CONTROL / user s/ geof f/ proj ect X/ mai n. ¢ from
/ project X main.c

= VERSION-CONTROL / user s/ geof f/ pr oj ect X/ def s. h from
/ proj ect X/ defs. h

= Populate Chris’ workspace:
= VERSION-CONTROL / user s/ chri s/ project X/ makefil e
from / proj ect X/ makefil e

= VERSION-CONTROL / user s/ chri s/ proj ect X/ nmai n. ¢c from
/ project X main.c

= VERSION-CONTROL / user s/ chri s/ proj ect X/ def s. h from
/ proj ect X/ defs. h

Server Workspace Example (3)

= Version history of main.c:

version controlled resources

version history resource [users/chris/ [users/geoff/
/projectX/main.c projectX/main.c projectX/main.c

/repo/o522/v1
/repo/0522/v2 ?

/his/0522 /repo/0522/v3
/repo/0522/v4

(R s (s

/repo/0522/v1l [repo/o522/v2 [repo/o522/v3 /repo/o522/v4 [repo/0522/v5

version resources

Server Workspace Example (4)

main.c makefile defs.h

[users/geoff/projectX/
main.c, 5

makefile, 3

defs.h, 2

Client Workspaces

= (Client maintains control over namespace of the locally
replicated data
= Server is required to maintain very little state

= Working resource
= Created upon checkout

= A location on the server where the client can write the
contents of the checked-out resource

= Goes away upon checkin
= CHECKIN converts working resource into a version resource

= A version history can have multiple simultaneous working
resources

Client Workspace Example

Assume work on file main.c:

. Client first replicates a version of main.c using GET

= Result is stored under a local name:
= /{local workspace name}/main.c

. Then, client uses CHECKOUT to checkout the same
version

= Creates a working resource

= URL of working resource found in Location: header of
CHECKOUT response

. Client works on local copy of main.c

. When done, client saves changes back to the server
= PUT to the working resource

. Then, CHECKIN of working resource

= Turns working resource into a version

Baselines

Purpose of Baselines

= When a large collection of documents is released
outside the developing organization, there is a need
to record exactly which document versions were
released.

= Especially true for software project releases

= A baseline can record the exact version of a large set
of resources under version control

Baselines can also be used for recording intermediate
project states

= The state of the project as of last Friday
= Quality assurance can then have a stable snapshot to work from

Baseline Definition

= A baselineis a special kind of version resource that
captures the state of the version-controlled members
of a configuration.

= A baseline historyis a version history whose versions
are baselines

= Baselines are versioned and change over time

New baselines are created by checking out and then
checking in a special kind of version-controlled
resource called a version-controlled configuration

= Baselines thus have the same three resource data model as
other resources under version control
= Version history for baselines - baseline history
= Version resources - baseline
= Version controlled resource - version controlled configuration

Baseline Mechanics

= A collection is placed under baseline control using
the BASELINE-CONTROL method

= Example:
= Source code for a project is in the /project/src/ collection
= Apply BASELINE-CONTROL to /project/src/

= Creating a new baseline history:

= BASELINE-CONTROL method:

= Creates a new version controlled configuration

= Puts its URL in DAV:version-controlled-configuration property of
collection

= Records association between baseline history and collection

Baseline Mechanics (2)

= Creating a new baseline:

= CHECKOUT version controlled configuration
= Makes the version controlled configuration changeable

= Taking a snapshot of a project:

= CHECKIN the version controlled configuration
= Creates a new baseline
= I.e., a new version in the version history of baselines
Also creates a new collection...
. in a server-defined portion of the namespace ..
WhICh contains a set of version-controlled resources ..

.. each of which has the value of the most recently checked -in
version in its version history.
Net effect:

= The new collection is a snapshot of the checked-in state of the
baselined collection at the moment of checkin

Baseline Details

= A workspace is defined to be a collection
= Can place a workspace under baseline control

= [t is possible to compare baselines

= Use compare-baseline report
= Tnvoke with REPORT method

= Describes which versions have been added, removed, or
changed

Features & Packages

Basic Features

= Protocol functionality is divided into:

= Features

= Assigned to be either Basic or Advanced
= Basic Features:

= VERSION-CONTROL
= Basic versioning
= Automatic versioning only (no checkin or checkout)
= REPORT method and version-tree report
CHECKOUT
= Checkout, checkin, and uncheckout
VERSION-HISTORY
= Version history resource has a URL in the server namespace
WORKSPACE
= Server workspace functionality
WORKING RESOURCE
= Client workspace functionality
UPDATE
LABEL

Advanced Features

= Advanced Features:

= MERGE
= Considered advanced due to workspace capabilities
= BASELINE
= Recording checked-in state of a collection
= ACTIVITY
= Versions associated with a logical change
= VERSION-CONTROLLED-COLLECTION
= Collections can be versioned

= Feature discovery is via OPTIONS

= Each feature has an associated tag that appears in the DAV:
response header

= E.g.: VERSION-CONTROL feature - “version-control” in DAV
response header
= DAV: 1, 2, version-control

Packages

= Features are divided into packages.

= Attempt to reduce the number of possible server feature
permutations a client might encounter

= A basic versioning server should support one of the following
feature sets:
= Core-Versioning
= VERSION-CONTROL only

= Basic-Server-Workspace
= VERSION-CONTROL
= WORKSPACE
= VERSION-HISTORY
= CHECKOUT

= Basic-Client-Workspace
= VERSION-CONTROL
= WORKING-RESOURCE
= UPDATE
= LABEL

Advanced Packages

= There are two packages for advanced features:

= Advanced-Server-Workspace
= Basic-Server-Workspace

= Plus all advanced features
= MERGE
= BASELINE
= ACTIVITY
= VERSION-CONTROLLED-COLLECTION

= Advanced-Client-Workspace
= Basic-Client-Workspace
= Plus all advanced features
= Thus, a client will likely encounter only servers that
have implemented one of six packages

DeltaV Resources

WebDAV

WebDAYV Resources

= http://www.webdav.org/
= A central collection of pages and links to all things WebDAV.

WebDAV Working Group

= http://www.ics.uci.edu/pub/ietf/webdav/

= Contains links to active documents, and a complete list of WebDAV-
supporting applications.

RFC 2518 — WebDAYV Distributed Authoring Protocol

= http://www.ics.uci.edu/pub/ietf/webdav/protocol/rfc2518.pdf
= This is the WebDAV Distributed Authoring Protocol specification

WebDAV: A network protocol for remote collaborative
authoring on the Web
= Proc, of the Sixth European Conference on Computer-Supported
Cooperative Work, Sept. 12-16, 1999, Copenhagen, Denmark, pp.
291-310.
= http://www.ics.uci.edu/~ejw/papers/dav-ecscw.pdf

= An academic paper giving an overview of the WebDAV Distributed
Authoring Protocol.

DeltaV

= Delta-V Working Group web page

= http://www.webdav.org/deltav/
= The home page for the IETF Delta-V Working Group, with links off to
the most recent specifications.
= @G. Clemm, J. Amsden, C. Kaler, J. Whitehead, “Versioning
Extensions to WebDAV", Internet-Draft, work-in-progress,
draft-ietf-deltav-versioning-15, April 17, 2001.

= http://www.webdav.org/deltav/protocol/draft-ietf-deltav-versioning-
15.htm

= The most recent revision of the versioning and configuration
management protocol specification.

= The Future of Distributed Software Development on the
Internet
= Web Techniques, Vol. 4, No. 10, October, 1999, pages 57-63

= http://www.webtechniques.com/archives/1999/10/whitehead/

= An introduction to WebDAV and DeltaV that describes the advantages of
DeltaV over CVS for remote collaborative software development

