
 1

DeltaV: Adding Versioning to the Web
WWW10 Tutorial Notes, By Jim Whitehead

Documents change over time. Whether they are word processing documents, spreadsheets, Web pages, or
source code, the process of creating the contents of these documents involves change over time. It is
frequently useful to track changes to a document over time, as this permits tracking who made a specific
change, backing-out undesirable changes, recording why a specific change was made, and the ability to
know what the document contents were at a specific point in time. Change tracking capabilities gives
greater control over change, since changes are now explicitly recorded, and an archive of important
document versions.

DeltaV is a network protocol that provides facilities for remote versioning and configuration management
of documents stored on a Web server. The DeltaV protocol can be used to support the following scenarios:

• A task force of people from geographically dispersed business units need to develop a report
together. Throughout the report-writing process, this group needs to solicit feedback, and would
like to keep a permanent copy of the exact report version they are having other people review (see
Figure 1).

• A cross-company collaboration project involves people from multiple companies, in several
different countries. The project has a Web site, which is developed using a WebDAV-aware Web
site authoring tool, such as Go Live, or Dreamweaver. Since any project member can edit the Web
site contents, the team wants to keep track of all changes, so there is a record of who changed
which page, and if a mistake is made the change can be undone.

• An open source project, comprised of team members from around the globe, is collaboratively
developing a software application. They need to record all source code changes, as well as create
stable baselines of their source code corresponding to public releases of the software. Furthermore,
developers need to edit and compile source code on their local machine.

The Web Versioning and Configuration Management (DeltaV) protocol has been developed as an open,
standards-based infrastructure that supports these collaborative development scenarios.

DAV/DeltaV
server

A

Johnathan

Word
2000

BOSTON LONDON

shared document

Rebecca

Word
2000

TOKYO

Kenji

Word
2000

DAV/DeltaV DAV/DeltaV

DAV/DeltaV

A A

v1 v2 v3

auto-versioning
enabled

Figure 1 - Three collaborators, located at three different sites, are jointly authoring a document using the
WebDAV capabilities of Microsoft Word 2000. The shared document is stored on a DeltaV server, with
auto-versioning enabled, and hence the document is automatically versioned as the collaborators work.

 2

The DeltaV protocol is an extension to the WebDAV (Web Distributed Authoring and Versioning)
protocol, which itself extends the Hypertext Transfer Protocol (HTTP), the core network protocol that
carries Web traffic between a Web server and a Web browser. Despite its name, the WebDAV protocol
only provides facilities for remote collaborative authoring of documents, and does not provide any
versioning capabilities. Initially the WebDAV working group had wanted to define a protocol for remote
versioning, but took much longer than expected just to finish the base remote authoring protocol. As a
result, the WebDAV working group postponed work on versioning features. The DeltaV working group
picked up where WebDAV left off, taking on the goal of adding versioning to the Web, as well as the more
ambitious goal of remote configuration management. The core defining document for the DeltaV protocol
is being developed by the DeltaV Working Group of the Internet Engineering Task Force (IETF). Despite
being a Web-related standard, the World Wide Web Consortium (W3C) is not actively involved in the
DeltaV specification effort.

HTTP protocol operations are called methods, and WebDAV adds seven new methods to the set of methods
defined by HTTP/1.1 (GET, HEAD, POST, OPTIONS, PUT, DELETE, TRACE). The WebDAV methods provide
overwrite protection (LOCK, UNLOCK), metadata management (PROPFIND, PROPPATCH), and namespace
management (COPY, MOVE, MKCOL). Just as the user of a Web browser is largely unaware of the HTTP
network traffic that request and download Web pages, so too a user of a WebDAV-enabled authoring tool
is largely unaware of the use of the WebDAV protocol. The WebDAV protocol is designed to be integrated
into existing authoring tools, adding Web-based remote authoring capabilities to the tools users already
know how to use. To date, this has been a successful strategy, with WebDAV support in document
authoring tools such as Word 2000, PowerPoint 2000, and Excel 2000 (via the “Web Folders” feature) as
well as in Acrobat 5 and Photoshop 6, and in Web authoring tools such as Go Live 5, and Dreamweaver 4.
You may already own a WebDAV-capable application!

To the base provided by HTTP and WebDAV, DeltaV adds 11 additional methods. Versioning capability is
provided by the methods VERSION-CONTROL, CHECKIN, CHECKOUT, UNCHECKOUT, and REPORT. An
unversioned resource is put under version control with VERSION-CONTROL. While under version control, a
typical editing process begins with CHECKOUT, involves one or more writes (PUTs) to the resource, and ends
with a CHECKIN. An editing session can be aborted using UNCHECKOUT. The version history of a resource
can be retrieved using REPORT. Unique human-readable names can be associated with specific versions
using LABEL. The default visible revision can be set using UPDATE. Two separate branches in a version
history can be brought together using MERGE. An activity represents logical changes than span multiple
revisions; MKACTIVITY creates new activities. A workspace allows multiple collaborators to work in
isolation on a set of resources; MKWORKSPACE creates new workspaces. A consistent snapshot of a set of
resources is a baseline, and is useful for recording the state of a software system before major ship dates.
The BASELINE-CONTROL method is used to place both versioned and unversioned collections under baseline
control, thus creating a version-controlled configuration. Checking-out then checking-in a version-
controlled configuration creates a new baseline (i.e., a new version of the version-controlled configuration).
Figure 2 summarizes the methods defined by HTTP, WebDAV, and DeltaV.

 3

HyperText Transfer Protocol (HTTP) 1.1 (RFC 2616, RFC 2617)

GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE, CONNECT

WebDAV Distributed Authoring Protocol (RFC 2518)

LOCK, UNLOCK, PROPFIND, PROPPATCH, COPY, MOVE, MKCOL

DeltaV Web Versioning and Configuration Management Protocol

CHECKIN, CHECKOUT, UNCHECKOUT, VERSION-CONTROL,
REPORT, UPDATE, LABEL, MERGE, MKWORKSPACE, BASELINE-
CONTROL, MKACTIVITY

Figure 2 - Methods defined by HTTP 1.1, WebDAV Distributed Authoring Protocol, and the DeltaV Web
Versioning and Configuration Management Protocol.

The defining document for the DeltaV protocol is Internet Draft draft-ietf-deltav-versioning-15. Internet
Drafts are working documents of the IETF, and have not yet been approved by the Internet Engineering
Steering Group as a Proposed Standard. That said, the DeltaV protocol has passed through several multi-
week working group last call for comments periods, and is expected to be quite stable going forward.
Approval as a Proposed Standard is expected by late summer 2001. The current specification is the basis
for at least one implementation effort, the Subversion project, an open-source replacement for CVS.

Versioning Data Model and Terminology
Within the HTTP/DAV/DeltaV family of specifications, a document on a Web server is known as a
resource. Like objects in object-oriented languages, resources have state, and operations on that state. The
state of a WebDAV resource comes in two parts, a body that contains the primary content (such as the text
of a document, or the bitmap data for an image), and properties, name/value pairs that provide metadata
about the resource. Properties come in two types: live properties whose value is computed and controlled
by the server, and dead properties whose value is controlled by the client, and stored by the server. The
operations on resources are termed methods, described previously.

DeltaV versioning terminology includes the following terms:

Version Control, Checked-In, Checked-Out

Version control is a set of constraints on how a resource can be updated. A resource under version
control is either in a checked-in or checked-out state, and the version control constraints apply only
while the resource is in the checked-in state.

Versionable Resource

A versionable resource is a resource that can be put under version control.

Version-Controlled Resource

When a versionable resource is put under version control, it becomes a version-controlled resource. A
version-controlled resource can be checked out to allow modification of its content or dead properties
by standard HTTP and WebDAV methods.

Version Resource

A version resource, or simply version, is a resource that contains a copy of a particular state (content
and dead properties) of a version-controlled resource. A version is created by checking in a checked-
out resource. The server allocates a distinct new URL for each new version, and this URL will never be
used to identify any resource other than that version. The content and dead properties of a version
never change. Version resources are sometimes termed revisions.

 4

Version History Resource

A version history resource, or simply version history, is a resource that contains all the versions of a
particular version-controlled resource.

Version Name

A version name is a string chosen by the server to distinguish one version of a version history from the
other versions of that version history (e.g., “1.0”, “1.2.1”). Versions from different version histories
may have the same version name. Version names are sometimes called version identifiers, or version
numbers.

Label

A label is a name that can be used to select a version from a version history. A label can be assigned by
either a client or the server. The same label can be used in different version histories.

Fork, Merge

When a second successor is added to a version, this creates a fork in the version history. When a
version is created with multiple predecessors, this creates a merge in the version history. A server may
restrict the version history to be linear (with no forks or merges), but an interoperable versioning client
should be prepared to deal with both forks and merges in the version history.

Figure 3 below illustrates several of the previous definitions.

v1

v2

v5

v3

v4

v6

Version History of foo.html

root version

version name fork

merge

Release_Beta

label

time

Figure 3 - A sample version history of a Web page.

In order to track the history of the content and dead properties of a versionable resource, an author can put
the resource under version control with a VERSION-CONTROL request. A VERSION-CONTROL request
performs three distinct operations:

1) It creates a new version history resource. By default, a version history resource is not assigned a URL,
and hence is not visible in the http scheme URL space. However, when the optional version-history feature
is supported, this changes, and each version history resource is assigned a new distinct and unique server-
defined URL.

2) It creates a new version resource and adds it to the new version history resource. The body and dead
properties of the new version resource are a copy of those of the versionable resource. The server assigns
the new version resource a new distinct and unique URL.

 5

3) It converts the versionable resource into a version-controlled resource. The version-controlled resource
continues to be identified by the same URL that identified it as a versionable resource. As part of this
conversion, it adds a DAV:checked-in property, whose value contains the URL of the new version resource.

This versioning data model is different from versioning tools such as RCS and SCCS. Taking RCS as an
example, placing a file “foo.html” under version control causes foo.html to be made read-only, and an
archive file RCS/foo.html,v is created. The archive file provides storage for the version history and for each
version of foo.html. Thus, the archive file plays the role of the version history resource and the set of
version resources. The read-only foo.html is similar in function to the version-controlled resource, acting as
the point in the namespace where versioning commands are directed (i.e., typically a user explicitly names
foo.html when they perform a checkout, instead of naming RCS/foo.html,v). Figure 4 below summarizes
the triad of resources used to represent a resource under version control, and its version history.

The value of the separation between version-controlled resource, version history resource, and version
resources lies in the ability to have multiple version-controlled resources for a given version history and its
versions. The version-controlled resource can be viewed as a handle for a version history which can be
placed in the authoring namespace of a server. The version-controlled resource is the primary resource to
which versioning commands such as CHECKOUT and CHECKIN are addressed. The benefit of having multiple
version-controlled resources per version history comes when workspaces are used. A workspace is a copy
of a set of resources in which a collaborator can work in isolation from other collaborators. A workspace is
made by creating a separate version-controlled resource for each workspace. This allows multiple
collaborators to work on a given version history in relative isolation; their interactions will come in the
form of branches in the version history. If the version-controlled resource were merged with the version
history, it would be more difficult to create workspaces, since the handle for the version history, and the
version history itself would be combined.

v1

v2

v3

Abstract version
history of foo.html

Representation of foo.html in DeltaV

v1 v2 v3

version resources

body of
version v3 +

changes

/his/73/ver/1 /his/73/ver/2 /his/73/ver/3

version-controlled resource

/foo.html

DAV:checked-out
Æ /his/73/ver/3

version history resource

DAV:version-history
Æ /his/73/vhr

/his/73/vhr

DAV:version-set
Æ /his/73/ver/1
Æ /his/73/ver/2
Æ /his/73/ver/3

DAV:root-version
Æ /his/73/ver/1

Figure 4 – Representation of a linear version history in the DeltaV data model. Since it is checked-out, and
hence writeable, the body of the version-controlled resource is the same as the body of version v3, plus any
changes that have been made since checkout. Information above the line in the version history resource and
the version-controlled resource are properties. Each arrow-terminated line represents a URL acting as a
pointer. The predecessor relationships between version resources are stored in the DAV:predecessor-set
property (shown in the figure only as arrow-terminated lines) on each version; similarly, successor
relationships are stored in the DAV:successor-set property (also only shown as arrow-terminated lines).
Version 3 additionally has the URL of the version-controlled resource in its DAV:checkout-set property

 6

(shown as an arrow-terminated line). The version name (“v1”, “v2”, “v3”) is stored in the DAV:version-
name property on each version.

Versioning Operations

Checkout, Checkin, and Uncheckout
The CHECKOUT method is applied to a version-controlled resource to allow modifications to its content and
dead properties. When a version is already checked out, or already has a successor, it is possible that a
branch could be made in the version history. Creation of a new branch upon checkout is controlled by the
DAV:checkout-fork property, which is stored on version resources (not the version-controlled resource).
Possible fork-control options include ok, a fork can be created, discouraged, the client explicitly needs to
indicate that fork creation is fine, and forbidden, a fork cannot be created. A similar property, called
DAV:checkin-fork controls creation of branches during CHECKIN.

While in the checked-out state, authoring clients can modify the content and dead properties of the version-
controlled resource using PUT and PROPPATCH. Once they are finished editing, the state of the resource can
be frozen as a new version using the CHECKIN method. If the editing session needs to be aborted, and
reverted back to the state it held just prior to the checkout, the UNCHECKOUT method can be invoked.

A comment describing the purpose of a change can be written into the DAV:comment property of a version.

Autoversioning
By the time there are DeltaV-capable servers, there will be a significant number of WebDAV clients. These
clients will not have any notion of versioning (i.e., they will not understand the CHECKOUT and CHECKIN
methods), yet it is desirable to provide versioning support for them. Ideally, as a document is edited using a
WebDAV-capable client, the DeltaV server will automatically version its contents. DeltaV provides this
capability, using a feature known as auto-versioning.

There are two styles of auto-versioning, depending on whether a new version is created every time the
resource is updated, or only when the resource is unlocked. In the first case, a PUT/PROPPATCH (i.e., a state-
modifying request) is preceded by a CHECKOUT, and is followed by a CHECKIN. That is, a PUT/PROPPATCH is
expanded to CHECKOUT�PUT/PROPPATCH�CHECKIN. In the second auto-versioning style, a LOCK request
also results in a CHECKOUT, and an UNLOCK additionally results in a CHECKIN. This works well for
authoring clients that using locking, since they typically take out a lock at the start of an editing session,
and remove the lock at the end, and hence auto-versioning based on locks causes the authoring session to
automatically be bracketed by CHECKOUT and CHECKIN operations.

Labels
Labels are human-readable strings that can be attached to a particular version. Labels are guaranteed to be
unique within a version history, but can be reused across version histories, and thus a label like
“release_beta” could be used to identify a single revision in multiple version histories. Labels are often
used as a simple form of configuration management; a configuration is the set of all versions with a given
label. The drawback to this scheme is that the mapping of label to version can change over time, and hence
there is no guarantee a configuration will remain the same. Labels are also used for selecting a specific
version from a version history; the Label header can be used with a GET and PROPFIND on a version-
controlled resource to select a specific version. The LABEL method is submitted to a version to add a new
label, move a label to that version, or delete a label.

Update
Typically, the body and dead properties of a checked-in version-controlled resource are the same as those
of the last checked-in version. For a linear version history, a checked-in version controlled resource
typically follows the tip of the history. The UPDATE method modifies the content and dead properties of a
checked-in version-controlled resource to be those of a specified version from the version history of that
version-controlled resource. This allows some version other than the one last checked-in to be reflected by
the version-controlled resource.

 7

Merge
When a version history has one or more branches that represent the output of collaborators working in
parallel (as opposed to representing variants), it is useful to merge together the branches. MERGE performs
this operation. If the server understands how to merge the two selected revisions together (most likely this
will be the case for text, as in program source code), it will do so. Otherwise the client has the
responsibility to combine together the contents and dead properties of the two revisions. This can be
performed by displaying a graphical merge tool to the user. One option of MERGE (DAV:no-auto-merge)
forces the server not to automatically merge the contents.

Version Tree Report
Versioning applications often provide in their user interface a depiction of a version history. There are two
ways a DeltaV client can gather the information needed to create such a visualization. The first is to
retrieve the contents of the DAV:version-set property of the version history, and then retrieve the
DAV:successor-set and DAV:version-name properties for each version in the history. For an N version
history, this would require N+1 PROPFIND requests. To provide a more efficient mechanism to retrieve this
same information, the report method was created. There are many possible reports that can be generated by
a DeltaV server. The version tree report allows a client to request a specific set of properties from all
members of a version history. By requesting the DAV:successor-set, and DAV:version-name properties in
the REPORT request, a client can retrieve all of the information needed to create a version history
visualization in one network round trip.

Activities
An activity is a non-versionable resource that selects a set of versions that are on a single line of descent,
where a line of descent is a sequence of versions connected by successor relationships. If an activity selects
versions from multiple version histories, the versions selected in each version history must be on a single
line of descent.

A common problem that motivates the use of activities is that it is often desirable to perform several
different logical changes in a single workspace, and then selectively merge a subset of those logical
changes to other workspaces. An activity can be used to represent a single logical change, where an
activity tracks all the resources that were modified to effect that single logical change. When a version-
controlled resource is checked out, the author specifies which activity should be associated with a new
version that will be created when that version-controlled resource is checked in. It is then possible to select
a particular logical change for merging into another workspace, by specifying the appropriate activity in a
MERGE request.

Another common problem is that although a version-controlled resource may need to have multiple lines of
descent, all work done by members of a given team must be on a single line of descent (to avoid merging
between team members). An activity resource provides the mechanism for addressing this problem. When
a version-controlled resource is checked out, a client can request that an existing activity be used or that a
new activity be created. Activity semantics then ensure that all versions in a given version history that are
associated with an activity are on a single line of descent. If all members of a team share a common
activity (or sub-activities of a common activity), then all changes made by members of that team will be on
a single line of descent.

Activities appear under a variety of names in existing versioning systems. When an activity is used to
capture a logical change, it is commonly called a change set. When an activity is used to capture a line of
descent, it is commonly called a branch. When a system supports both branches and change sets, it is often
useful to require that a particular change set occur on a particular branch. This relationship can be captured
by making the change set activity be a subactivity of the branch activity.

The MKACTIVITY method creates new activities. This activity is then submitted as part of a CHECKOUT
operation, which then causes the server to record the URL of the checked-out resource in the DAV:activity-
checkout-set property. When the checked-out resource is checked-in, the URL of the new version is
recorded in the DAV:activity-version-set property, and the checked-out resource is removed from
DAV:activity-checkout-set.

 8

Workspaces
A workspace is a location where a person can work in isolation from the ongoing changes made by all other
collaborators working on the same set of resources. There are two broad classes of workspace, client-side
and server-side.

A client-side workspace is one in which copies of all resources in a project have been replicated to the local
disk of the client, and all editing work takes place on the local replica (this is how CVS works). Once
editing has been finished, the contents of a local file are written to the server (using PUT), and are then
checked in. Client-side workspaces have the advantage of good support for disconnected operation, and the
ability to work with all existing file-oriented tools (this advantage is also shared by server-side workspaces
that employ local caching). Data-intensive activities, like code compilation, or static code analysis,
typically work faster on locally cached data. Client-side workspaces have their drawbacks, though. They do
not allow a user to access the workspace from clients in different physical locations, such as from another
office, from home, or while traveling. Client-side workspaces do not isolate clients from a logical change
that involves renaming shared resources; all clients use a common set of shared version-controlled
resources and every client sees the result of a MOVE as soon as it occurs.

A server-side workspace is one in which there are multiple locations in the server URL namespace from
which to access the set of project resources. Typically there is a separate location for each collaborator, so,
for example, Lisa might have her workspace at /users/people/lisa/projectX, and Chuck might have
his workspace at /users/people/chuck/projectX. Multiple version-controlled resources per version
history (one per collaborator) allow parallel work on the same version history from multiple workspaces.
Like client-side workspaces, server-side workspaces also permit local replication of data, and
implementations will typically cache at least a portion of each version history. Server-side workspaces can
be accessed from multiple locations, and permit logical operations such as a MOVE to be kept isolated until
it is shared with other collaborators. The drawback of server-side workspaces is the additional demands
they place on the server namespace, requiring a separate portion of the namespace for each collaborator.

Client-Side Workspaces and Working Resources
Since the client maintains a client-side workspace, very little server state maintained. Server support for
client-side workspaces comes in the form of the working resource feature. A working resource is created
upon checkout, and is a location on the server where the client can write the contents of the checked-out
resource once it is ready to be checked-in. So, for example, a client using client-side workspaces would
first replicate the contents of resource /foo.html by performing a GET /foo.html, and writing the GET
response to a local disk under the name /{local workspace name}/foo.html. The client would next
perform a CHECKOUT on the version it just retrieved using GET, thus causing the creation of a working
resource, whose URL is returned in the Location header. The client stores the working resource URL
locally. At this point, the client can, if it wishes, completely disconnect from the network while editing
takes place. Once editing is done, the client writes the new value of /{local workspace
name}/foo.html to the working resource on the server using PUT, and follows this with a CHECKIN of the
working resource, causing the server to record the contents of the working resource as a new version
resource.

Server-Side Workspaces
For server-side workspaces, the server explicitly records the membership of a workspace. A new
workspace is created using the MKWORKSPACE method. Workspaces can contain versioned and unversioned
resources. A workspace is created by building up its contents, resource by resource, either by adding new
unverisoned resources using PUT, or adding existing versioned-controlled resources using VERSION-
CONTROL.

For example, consider the following workspace containing three version-controlled resources:

/projectX/makefile
/projectX/main.c
/projectX/defs.h

Geoff and Chris want to collaborate together on this project, each working in a separate server-side
workspace. First, the two workspaces are created:

 9

MKWORKSPACE /users/geoff/projectX/
MKWORKSPACE /users/chris/projectX/

Next, version-control is used to add each of the version-controlled resources to the two workspaces. First
Geoff’s workspace is populated:

VERSION-CONTROL /users/geoff/projectX/makefile from /projectX/makefile
VERSION-CONTROL /users/geoff/projectX/main.c from /projectX/main.c
VERSION-CONTROL /users/geoff/projectX/defs.h from /projectX/defs.h

Then Chris’ workspace is populated:

VERSION-CONTROL /users/chris/projectX/makefile from /projectX/makefile
VERSION-CONTROL /users/chris/projectX/main.c from /projectX/main.c
VERSION-CONTROL /users/chris/projectX/defs.h from /projectX/defs.h

At the end of this sequence, there are three server-side workspaces (the original workspace, Geoff’s
workspace, and Chris’ workspace), each containing the three project resources. The version histories
associated with each of the project files now has three version-controlled resources associated with it, one
for each of the two workspaces, and the one it had originally.

Baselines
A configuration is a set of resources that consists of a root collection and all members of that root
collection that are not members of another configuration. A configuration that contains a large number of
resources can consume a large amount of space on a server. This can make it prohibitively expensive to
remember the state of an existing configuration by creating a copy of its root collection.

A baseline is a special kind of version resource that captures the state of the version-controlled members of
a configuration. In particular, it captures the DAV:checked-in version of each version-controlled resource
that is a member of the root collection, as well as the DAV:checked-in version of the collection if the
collection itself is a version-controlled resource. A baseline history is a special kind of version history
whose versions are baselines. New baselines are created by checking out and then checking in a special
kind of version-controlled resource called a version-controlled configuration.

A collection that is under baseline control is called a baseline-controlled collection. In order to allow
efficient baseline implementation, the state of a baseline of a collection is limited to be a set of versions and
their names relative to the collection, and the operations on a baseline are limited to the creation of a
baseline from a collection, and restoring or merging the baseline back into a collection. A server can
automatically put a collection under baseline control when it is created, or a client can use the BASELINE-
CONTROL method to put a specified collection under baseline control.

As a configuration gets large, it is often useful to break it up into a set of smaller configurations that form
the logical components of that configuration. In order to capture the fact that a baseline of a configuration
is logically extended by a component configuration baseline, the component configuration baseline is
captured as a subbaseline of the baseline.

The root directory of a configuration is unconstrained with respect to its relationship to the root collection
of any of its components. In particular, the root directory of a configuration can be an ancestor of a root
directory of one of its components (e.g. configuration /sys/x can have a component /sys/x/foo), a
descendant (e.g. configuration /sys/y/z can have a component /sys/y), or neither (e.g. configuration /sys/x
can have a component /comp/bar).

 10

Further Reading

WebDAV Distributed Authoring Protocol:

• WebDAV Resources
<http://www.webdav.org/>
A web site containing a central collection of pages and links to all things WebDAV.

• WebDAV Working Group
<http://www.ics.uci.edu/pub/ietf/webdav/>
Contains links to active documents, and a complete list of WebDAV-supporting applications.

• Y. Y. Goland, E. J. Whitehead, Jr., A. Faizi, S. R. Carter, D. C. Jensen, “HTTP Extensions for
Distributed Authoring – WebDAV”, Microsoft, U.C. Irvine, Netscape, Novell. RFC 2518, February,
1999.
<http://www.ics.uci.edu/pub/ietf/webdav/protocol/rfc2518.pdf>
The WebDAV Distributed Authoring Protocol specification.

• E. J. Whitehead, Jr., Y. Y. Goland, “WebDAV: A network protocol for remote collaborative authoring
on the Web”, Proc. of the Sixth European Conference on Computer-Supported Cooperative Work,
Sept. 12-16, 1999, Copenhagen, Denmark, pp. 291-310.
<http://www.ics.uci.edu/~ejw/papers/dav-ecscw.pdf>
An academic paper giving an overview of the WebDAV Distributed Authoring Protocol.

• Evolving the Web into a Read and Write Medium: An Interview with Jim Whitehead, Chair IETF
WebDAV
<http://msdn.microsoft.com/workshop/standards/webdav.asp>
A good series of Q&A concerning WebDAV.

• WebDAV Book of Why, Yaron Y. Goland
<http://www.webdav.org/papers/#misc>
A collection of perspectives on WebDAV design rationale

• WebDAV Frequently Asked Questions (FAQ)
<http://www.webdav.org/other/faq.html>
A slightly dated list of DAV Q&A

Versioning and Configuration Management (Delta-V)

• Delta-V Working Group web page
<http://www.webdav.org/deltav/>
The home page for the IETF Delta-V Working Group, with links off to the most recent specifications.

• G. Clemm, J. Amsden, C. Kaler, J. Whitehead, “Versioning Extensions to WebDAV”, Internet-Draft,
work-in-progress, draft-ietf-deltav-versioning-15,April 14, 2001.
<http://www.webdav.org/deltav/protocol/draft-ietf-deltav-versioning-15.htm>
The most recent revision of the versioning and configuration management protocol specification.

• J. Whitehead, “The Future of Distributed Software Development on the Internet.” Web Techniques,
Vol. 4, No. 10, October, 1999, pages 57-63.
< http://www.webtechniques.com/archives/1999/10/whitehead/>
An introduction to WebDAV and DeltaV that describes the advantages of DeltaV over CVS for remote
collaborative software development.

